Advanced Econometrics Chapter 12: Linear Models for Panel Data

In Choi

Sogang University

∃ >

Useful references:

- Badi Baltagi (2008) *Econometric Analysis of Panel Data*, 4th Edition, John Wiley and Sons.
- Cheng Hsiao (2003) *Analysis of Panel Data*, 2nd Edition, Cambridge University Press.
- Cameron, A.C., and P.K. Trivedi (2005). Microeconometrics: Methods and Applications. Cambridge University Press: New York.
- Wooldridge, J. (2002). *Econometric Analysis of Cross Section and Panel Data*, The MIT Press.

• A general model for panel data

$$y_{it} = \alpha + x'_{it}\beta + u_{it}, \ (i = 1, ..., n, \ t = 1, ..., T)$$
(1)
$$u_{it} = \mu_i + \nu_{it}.$$

i : households, individuals, firms, countries, etc.

t: time

- α : a scalar coefficient
- $\beta: K imes 1$ coefficient vector
- x_{it} : the (i, t)-th observation on K regressors
- μ_i : unobservable individual specific effect
- v_{it} : remainder disturbance term

Example

Earnings equation

 y_{it} : earnings of the head of the household

 x_{it} : a set of variables affecting earnings (experience, education, gender, race, etc.).

 μ_i : individual's unobserved ability

- Large number of data points better efficiency
- Panel data allow a researcher to study a number of important economic questions that cannot be addressed using cross-sectional or time series data sets.

Example

Consider a simple linear regression model

$$y_{it} = \alpha + \beta' x_{it} + \rho' z_{it} + u_{it}.$$

If z_i is unobservable and related to x_{it} , the OLS regression of y_{it} on x_{it} yields biased estimate of β . However, if $T \ge 2$ (i.e., if panel data are available),

$$y_{it} - y_{i,t-1} = \beta'(x_{it} - x_{i,t-1}) + u_{it} - u_{i,t-1}.$$

Running OLS using this model, we can obtain a consistent estimate of β .

Assumption

- µ_i are fixed parameters to be estimated. (It is usually assumed to be a random variable correlated with the regressors.)
- 2 $\{x_{it}\}$ and $\{v_{i\underline{t}}\}$ are independent.
- $v_{it} \sim iid(0, \sigma_v^2).$

The fixed effects model

The LSDV (least squares dummy variables) estimator of β
 Using matrix notation, write model (1) as

$$y = \alpha \iota_{NT} + X\beta + Z_{\mu}\mu + \nu \tag{2}$$

where

$$y = [y_{11}, ..., y_{1T}, y_{21}, ..., y_{2T}, ..., y_{N1}, ..., y_{NT}]';$$

$$\iota_{NT} = [1, ..., 1]';$$

$$X = \begin{bmatrix} x'_{11} \\ \vdots \\ x'_{1T} \\ \vdots \\ x'_{N1} \\ \vdots \\ x'_{NT} \end{bmatrix};$$

$$Z_{\mu}=I_{N}\otimes\iota_{T};$$

$$\boldsymbol{\mu} = [\mu_1,...,\mu_N]'$$

In Choi (Sogang University)

9 / 53

3

メロト メポト メヨト メヨト

The fixed effects model

Let

$$P = Z_{\mu} (Z'_{\mu} Z_{\mu})^{-1} Z'_{\mu}$$
 and $Q = I - P$.

Premultiply model (2) by Q. The resulting model is

$$Qy = QX\beta + Q\nu \tag{3}$$

since $QZ_{\mu} = 0$ and $Q\iota_{NT} = 0$. The latter relation holds because

$$Q\iota_{NT} = \iota_{NT} - Z_{\mu}(Z'_{\mu}Z_{\mu})^{-1}Z'_{\mu}\iota_{NT}$$

= $\iota_{NT} - \frac{1}{T}Z_{\mu}Z'_{\mu}\iota_{NT}$
= $\iota_{NT} - \iota_{NT}$
= 0.

æ

個 と く ヨ と く ヨ と …

 Running OLS on model (3), we obtain the LSDV (least squares dummy variables) estimator of β. This is

$$\tilde{\beta}_{LSDV} = (X'QX)^{-1}X'Qy.$$

This estimator is also called the Within-OLS estimator.

• $\hat{\beta}_{LSDV}$ is equivalent to the OLS estimator from the model

$$y_{it} - \bar{y}_{i.} = (x_{it} - \bar{x}_{i.})'\beta + u_{it} - \bar{u}_{i.}$$
(4)

- Parameters α and μ_i cannot be estimated separately.
- Only $\alpha + \mu_i$ can be estimated by

$$\bar{y}_{i.} - \tilde{\beta}'_{LSDV} \bar{x}_{i.},$$

where $\bar{z}_{i} = \frac{1}{T} \sum_{t=1}^{T} z_{it}$.

The fixed effects model Within-OLS estimator

If Σ^N_{i=1} μ_i = 0 (i.e., individual effects cancel out each other), μ_i can be estimated. Averaging (1) over time gives

$$\bar{y}_{i.} = \alpha + \beta' \bar{x}_{i.} + \mu_i + \bar{v}_{i.} \tag{5}$$

Averaging across all observations in (1) and utilizing the restriction $\sum_{i=1}^{N} \mu_i = 0$, we obtain

$$\bar{y}_{..} = \alpha + \beta' \bar{x}_{..} + \bar{v}_{..}, \qquad (6)$$
here $\bar{z}_{..} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} z_{it}$. From (6),
 $\tilde{\alpha} = \bar{y}_{..} - \tilde{\beta}'_{ISDV} \bar{x}_{..}.$

We obtain from (5)

$$\tilde{\mu}_i = \bar{y}_{i.} - \tilde{\alpha} - \tilde{\beta}'_{LSDV} \bar{x}_{i.}$$

w

- If there are any time invariant variables in the model (some elements of x_{it} are represented as z_i), their coefficients cannot be estimated because Q wipes out the variables.
- If T is fixed and $N \to \infty$, $\tilde{\beta}_{LSDV}$ is consistent.
- If T is fixed and $N \to \infty$, the OLS estimator of $\alpha + \mu_i$ is inconsistent (the incidental parameter problem). Intuitively, this happens because the number of parameters increases at exactly the same rate as the number of sample increases.
- OLS on model (1) yields biased and inconsistent estimates of the regression coefficients.

First-differencing estimator

• The first-differencing gives

$$\Delta y_{it} = \Delta x_{it}^{\prime} \beta + \Delta v_{it}.$$

The individual effects variable μ_i is eliminated by the first-differencing.

- Running OLS on this model gives a consistent estimator of β .
- The variance-covariance matrix of the first-differencing estimator is $E\left[\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\Delta x_{it}\Delta x'_{it}\right)^{-1}\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\sum_{s=1}^{T}\Delta x_{it}\Delta x'_{is}\Delta v_{it}\Delta v_{is}\right) \times \left(\sum_{i=1}^{N}\sum_{t=1}^{T}\Delta x_{it}\Delta x'_{it}\right)^{-1}\right].$

First-differencing estimator

• The variance-covariance matrix is estimated by $\left(\sum_{i=1}^{N} \sum_{t=1}^{T} \Delta x_{it} \Delta x'_{it} \right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \Delta x_{it} \Delta x'_{it} \Delta \hat{v}_{it} \Delta \hat{v}_{is} \right) \\
\times \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \Delta x_{it} \Delta x'_{it} \right)^{-1},$

where $\Delta \hat{v}_{it}$ is the residual from the first-differencing estimation.

• When *T* = 2, the Within-OLS and first-differencing estimators are equivalent.

If

$$u_{it} = \mu_i + \lambda_t + \nu_{it},$$

where λ_t denotes the time-specific variable common to every individual, $\tilde{\beta}_{LSDV}$ is equivalent to the OLS estimator from the model

$$y_{it} - \bar{y}_{i.} - \bar{y}_{t.} + \bar{y}_{..} = (x_{it} - \bar{x}_{i.} - \bar{x}_{t.} + \bar{x}_{..})'\beta + u_{it} - \bar{u}_{i.} - \bar{u}_{t.} + \bar{u}_{..},$$

where $\bar{z}_{t.} = \frac{1}{N} \sum_{i=1}^{N} z_{it}$

3

The fixed effects model Testing for fixed effects

• Assume $\sum_{i=1}^{N} \mu_i = 0$ and consider the null hypothesis

$$H_0: \mu_1 = \mu_2 = \dots = \mu_{N-1} = 0.$$

Under this null, there are no fixed effects. This can be tested by Chow test. Let

RRSS : restricted residual sum of squares from OLS

 $\ensuremath{\textit{URSS}}$: unrestricted residual sum of squares from LSDV Then,

$$F = \frac{(RRSS - URSS)/(N-1)}{URSS/(NT - N - K)} \sim F_{N-1,N(T-1)-K}$$

under $v_{it} \sim iidN(0, \sigma^2)$.

• Estimator of σ^2

Let \hat{u}_{it} be the residual from the regression on (4). Then,

$$\hat{\sigma}^2 = rac{1}{NT-N-K}\sum_{i=1}^N\sum_{t=1}^T\hat{u}_{it}^2$$

The divisor is chosen to be NT - N - K in order to make $\hat{\sigma}^2$ unbiased.

- ∢ ∃ →

- Assumption
 - $\begin{array}{l} \bullet \quad \mu_i \sim iid(0, \sigma_{\mu}^2); \ v_{it} \sim iid(0, \sigma_{v}^2). \\ \begin{array}{l} \bullet \quad \mu_i \text{ are independent of } v_{it}. \\ \begin{array}{l} \bullet \quad x_{it} \text{ are independent of } \mu_i \text{ and } v_{it} \text{ for all } i \text{ and } t. \end{array} \end{array}$
- In the random effects model, there is no need for estimating μ_i . Estimating σ_{μ}^2 is good enough.

GLS estimation of the random effects model

Write the model as

$$\begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \alpha \begin{pmatrix} \iota_T \\ \vdots \\ \iota_T \end{pmatrix} + \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix},$$

where $\iota_T = [1, ..., 1]'$. The variance-covariance matrix of u_i is for all i

$$V = E(u_i u'_i) = \sigma_{\mu}^2 \iota_T \iota'_T + \sigma_{\nu}^2 I_T$$

= $\sigma_{\mu}^2 J_T + \sigma_{\nu}^2 I_T$
= $T \sigma_{\mu}^2 J_T + \sigma_{\nu}^2 J_T + \sigma_{\nu}^2 (I_T - J_T) (J_T = J_T / T)$
= $(T \sigma_{\mu}^2 + \sigma_{\nu}^2) J_T + \sigma_{\nu}^2 (I_T - J_T).$

3

• • = • • = •

GLS estimation of the random effects model

• Note that \bar{J}_T and $(I_T - \bar{J}_T)$ are idempotent matrices and that $\bar{J}_T(I_T - \bar{J}_T) = 0$.

The inverse of matrix of V is

$$V^{-1} = \frac{1}{T\sigma_{\mu}^{2} + \sigma_{\nu}^{2}}\bar{J}_{T} + \frac{1}{\sigma_{\nu}^{2}}(I_{T} - \bar{J}_{T})$$
$$= \frac{1}{\sigma_{\nu}^{2}}\left((I_{T} - \bar{J}_{T}) + \psi\bar{J}_{T}\right)$$
$$= \frac{1}{\sigma_{\nu}^{2}}\left(Q + \psi\bar{J}_{T}\right),$$

where
$$\psi = rac{\sigma_v^2}{T\sigma_\mu^2 + \sigma_v^2}.$$

2

イロト イポト イヨト イヨト

GLS estimation of the random effects model

• Let $\delta = (\alpha, \beta')'$ and $\tilde{X}_i = [\iota_T X_i]$. The normal equations for the GLS estimator of δ are written as

$$\left[\sum_{i=1}^{N} \tilde{X}_{i}^{\prime} V^{-1} \tilde{X}_{i}\right] \hat{\delta} = \left[\sum_{i=1}^{N} \tilde{X}_{i}^{\prime} V^{-1} y_{i}\right].$$
(7)

GLS estimation of the random effects model

• Since

$$egin{array}{rcl} ilde{X}_i' V^{-1} ilde{X}_i &=& rac{1}{\sigma_v^2} ilde{X}_i' \left(Q + \psi ar{J}_T
ight) ilde{X}_i \ &=& rac{1}{\sigma_v^2} \left(ilde{X}_i' ilde{X}_i - ilde{X}_i' ar{J}_T ilde{X}_i + \psi ilde{X}_i' ar{J}_T ilde{X}_i
ight), \end{array}$$

letting

$$T_{\bar{x}\bar{x}} = \sum_{i}^{N} \tilde{X}_{i}' \tilde{X}_{i}; B_{\bar{x}\bar{x}} = \sum_{i}^{N} \tilde{X}_{i}' \bar{J}_{T} \tilde{X}_{i}; W_{\bar{x}\bar{x}} = T_{\bar{x}\bar{x}} - B_{\bar{x}\bar{x}}$$

we may write

$$\sum_{i=1}^{N} \tilde{X}'_{i} V^{-1} \tilde{X}_{i} = \frac{1}{\sigma_{v}^{2}} \left[\left(T_{\bar{x}\bar{x}} - B_{\bar{x}\bar{x}} \right) + \psi B_{\bar{x}\bar{x}} \right] \\ = \frac{1}{\sigma_{v}^{2}} \left[W_{\bar{x}\bar{x}} + \psi B_{\bar{x}\bar{x}} \right].$$

æ

- ∢ ∃ ▶

< (T²) ▶

GLS estimation of the random effects model

In the same manner, letting

$$\mathcal{T}_{ar{x}y} = \sum_i^N ilde{X}_i' y_i; \mathcal{B}_{ar{x}y} = \sum_i^N ilde{X}_i' ar{J}_T y_i; \mathcal{W}_{ar{x}y} = \mathcal{T}_{ar{x}y} - \mathcal{B}_{ar{x}y},$$

we obtain

$$egin{array}{rcl} \sum\limits_{i=1}^N ilde{X}'_i V^{-1} y_i &=& rac{1}{\sigma_v^2} \left[\left(T_{ar{x}y} - B_{ar{x}y}
ight) + \psi B_{ar{x}y}
ight] \ &=& rac{1}{\sigma_v^2} \left[W_{ar{x}y} + \psi B_{ar{x}y}
ight]. \end{array}$$

Thus, the normal equation (7) becomes

$$[W_{\bar{x}\bar{x}}+\psi B_{\bar{x}\bar{x}}]\hat{\delta}=[W_{\bar{x}y}+\psi B_{\bar{x}y}].$$

GLS estimation of the random effects model

• Further calculations give, letting $\bar{z}_i = \frac{1}{T} \sum_{t=1}^{T} z_{it}$,

$$\begin{bmatrix} \psi NT & \psi T \sum_{i=1}^{N} \bar{x}'_{i} \\ \psi T \sum_{i=1}^{N} \bar{x}_{i} & \sum_{i=1}^{N} X'_{i} Q X_{i} + \psi T \sum_{i=1}^{N} \bar{x}_{i} \bar{x}'_{i} \end{bmatrix}^{-1} \begin{bmatrix} \hat{\alpha}_{GLS} \\ \hat{\beta}_{GLS} \end{bmatrix}$$
$$= \begin{bmatrix} \psi NT \bar{y} \\ \sum_{i=1}^{N} X'_{i} Q y_{i} + \psi T \sum_{i=1}^{N} \bar{x}_{i} \bar{y}'_{i} \end{bmatrix},$$

from which we obtain

$$\hat{\beta}_{GLS} = \left[\frac{1}{T}\sum_{i=1}^{N}X_{i}^{\prime}QX_{i} + \psi T\sum_{i=1}^{N}(\bar{x}_{i}-\bar{x})(\bar{x}_{i}-\bar{x})^{\prime}\right]^{-1} \times \left[\frac{1}{T}\sum_{i=1}^{N}X_{i}^{\prime}Qy_{i} + \psi T\sum_{i=1}^{N}(\bar{x}_{i}-\bar{x})(\bar{y}_{i}-\bar{y})^{\prime}\right] = \Delta\hat{\beta}_{b} + (I-\Delta)\tilde{\beta}_{LSDV},$$

GLS estimation of the random effects model

where

$$\Delta = \psi T \left[\sum_{i=1}^{N} X'_{i} Q X_{i} + \psi T \sum_{i=1}^{N} (\bar{x}_{i} - \bar{x}) (\bar{x}_{i} - \bar{x})' \right]^{-1} \\ \times \left[\sum_{i=1}^{N} (\bar{x}_{i} - \bar{x}) (\bar{x}_{i} - \bar{x})' \right], \\ \hat{\beta}_{b} = \left[\sum_{i=1}^{N} (\bar{x}_{i.} - \bar{x}_{..}) (\bar{x}_{i.} - \bar{x}_{..})' \right]^{-1} \left[\sum_{i=1}^{N} (\bar{x}_{i.} - \bar{x}_{..}) (\bar{y}_{i.} - \bar{y}_{..})' \right]$$

• The estimator $\hat{\beta}_b$ is called the between-group estimator because it ignores variation within the group. This formula shows that the $\hat{\beta}_{GLS}$ is a weighted average of $\hat{\beta}_b$ and $\tilde{\beta}_{LSDV}$.

GLS estimation of the random effects model

In addition,

$$\hat{\mu}_{GLS} = \bar{y}_{..} - \hat{\beta}_{GLS}' \bar{x}_{..}$$

•
$$Var(\hat{\beta}_{GLS}) = \sigma_v^2 \left[\sum_{i=1}^N X_i' Q X_i + \psi T \sum_{i=1}^N (\bar{x}_i - \bar{x}) (\bar{x}_i - \bar{x})' \right]^{-1}$$

• $Var(\hat{\beta}_{LSDV}) - Var(\hat{\beta}_{GLS}) \ge 0$. (Use the relation

 $A \ge B$ implies $B^{-1} \ge A^{-1}$

and the fact that $\psi > 0$ to show this.)

• For fixed $N, \psi \to 0$ as $T \to \infty$. Thus, for large $T, \tilde{\beta}_{LSDV}$ and $\hat{\beta}_{GLS}$ are close to each other.

• Estimating σ_{μ}^2 and σ_{ν}^2 Note that

$$\bar{y}_{i.} = \alpha + \beta \bar{x}_{i.} + \mu_i + \bar{v}_{i.}$$

and

$$y_{it} - \bar{y}_{i.} = (x_{it} - \bar{x}_{i.})'\beta + v_{it} - \bar{v}_{i.}$$

Thus, we can use the LSDV and between group residuals. That is,

$$\hat{\sigma}_{v}^{2} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \left[(y_{it} - \bar{y}_{i.}) - \tilde{\beta}_{LSDV}'(x_{it} - \bar{x}_{i.}) \right]^{2}}{N(T-1) - K}$$

and

$$\hat{\sigma}_{\mu}^{2} = \frac{\sum_{i=1}^{N} (\bar{y}_{i.} - \hat{\alpha}_{b} - \hat{\beta}_{b} \bar{x}_{i.})^{2}}{N - (K+1)} - \frac{1}{T} \sigma_{\nu}^{2}.$$

Using these, the FGLS estimator can be devised. Note that the divisor for $\hat{\sigma}_{v}^{2}$ is chosen to be NT - N - T in order to make it unbiased.

Let

$$\lambda = 1 - \sqrt{\frac{\sigma_v^2}{T\sigma_\mu^2 + \sigma_v^2}}.$$

• The RE estimator is also obtained by running regression on

$$y_{it} - \lambda \bar{y}_{i.} = \beta'(x_{it} - \lambda \bar{x}_{i.}) + u_{it} - \lambda \bar{u}_{i.}$$

1 If $\lambda = 1$, then this is just the fixed effects estimator.

So, the bigger the variance of the unobserved effect, the closer it is to FE.

- The fixed-effects model do not require assuming that the individual effect variable and the regressors are independent.
- The fixed-effects model has the problem of incidental parameters.
- In the random-effects model, the number of parameters is fixed and efficient estimation methods can be derived.
- In the random-effects model, one has to assume no correlation between the individual effect variable and the regressors.

Hausman's test

•
$$H_0: E(\mu_i \mid x_{it}) = 0$$

Test statistic

$$\begin{split} m &= \left(\tilde{\beta}_{LSDV} - \hat{\beta}_{GLS}\right)' \left(Var(\tilde{\beta}_{LSDV}) - Var(\hat{\beta}_{GLS}) \right)^{-1} \left(\tilde{\beta}_{LSDV} - \hat{\beta}_{GLS} \right) \\ \bullet \text{ As } N \to \infty, \ m \xrightarrow{d} \chi^2(K). \end{split}$$

э

→ Ξ →

• The model and estimation

$$y_{it} = \alpha + \beta' x_{it} + \rho' z_i + u_{it}; \qquad (8)$$
$$u_{it} = \mu_i + v_{it}.$$

The LSDV estimator of β is, as before,

$$\tilde{\beta}_{LSDV} = (X'QX)^{-1}X'Qy.$$

• The individual mean over time satisfies

$$\bar{y}_{i.} - \bar{x}'_{i.}\beta = \alpha + \rho' z_i + \mu_i + \bar{v}_i.$$

If μ_i are random variables uncorrelated with the regressors, the parameters α and ρ are estimated by running OLS on this model assuming $\mu_i + \bar{v}_i$. is an error term and substituting $\tilde{\beta}_{LSDV}$ for β . These estimators are consistent when $N \to \infty$.

- More efficient estimators of α , β and ρ can be obtained by GLS (cf. Hsiao, p.53)
- Model (8) can further be generalized by the specification

$$y_{it} = \alpha + \beta' x_{it} + \rho' z_i + \gamma' w_t + u_{it};$$

$$u_{it} = \mu_i + \lambda_t + v_{it}.$$

See Hsiao for further details.

• Consider the model

$$y_{it} = \alpha + \gamma y_{i,t-1} + \mu_i + v_{it}, \ (t = 1, ..., T; i = 1, ..., N).$$

Assume

$$\begin{array}{l} \bullet \quad |\gamma| < 1. \\ \bullet \quad y_{i0} \text{ are observable.} \\ \bullet \quad v_{it} \sim iid(0, \sigma^2) \text{ for all } i. \\ \bullet \quad \{v_{1t}\}, \dots, \{v_{Nt}\} \text{ are independent.} \\ \bullet \quad E(v_{it}\mu_i) = 0 \text{ for all } i \text{ and } t. \end{array}$$

æ

イロト イ理ト イヨト イヨトー

• The LSDV estimator of γ is

$$\hat{\gamma} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{it} - \bar{y}_{i})(y_{i,t-1} - \bar{y}_{i,-1})}{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})^{2}} \qquad (9)$$

$$= \gamma + \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})(v_{i,t} - \bar{v}_{i})/NT}{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})^{2}/NT}.$$

Image: A matrix of the second seco

æ

Continuous substitution gives

$$y_{it} = v_{it} + \gamma v_{i,t-1} + ... + \gamma^{t-1} v_{i1} + \frac{1 - \gamma^t}{1 - \gamma} (\alpha + \mu_i) + \gamma^t y_{i0}.$$

Summing $y_{i,t-1}$ over t, we have

$$\sum_{t=1}^{T} y_{i,t-1} = \frac{1-\gamma^{T}}{1-\gamma} y_{i0} + \frac{(T-1)-T\gamma+\gamma^{T}}{(1-\gamma)^{2}} (\alpha+\mu_{i}) \qquad (10)$$
$$+ \frac{1-\gamma^{T-1}}{1-\gamma} v_{i1} + \frac{1-\gamma^{T-2}}{1-\gamma} v_{i2} + \dots + v_{i,T-1}.$$

Image: Image:

ヨト イヨト

э

To analyze the probability limit of the numerator of estimator (9), consider the relations

$$p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1}) (v_{i,t} - \bar{v}_i)$$

$$= p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1}) v_{i,t}$$

$$= -p \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \bar{y}_{i,-1} \bar{v}_i,$$

where the second equality follows since $p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{i,t-1} v_{i,t} = 0.$

- A I I I A I I I I

But using (10) and the given assumptions, we find

$$-p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \bar{y}_{i,-1} \bar{v}_i = -\frac{\sigma^2}{T^2} \frac{(T-1) - T\gamma + \gamma^T}{(1-\gamma)^2}, \qquad (11)$$

which is the probability limit of the numerator of estimator (9). Similarly, for the denominator of estimator (9), we obtain

$$p \lim_{N \to \infty} \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})^2 / NT$$
$$= \frac{\sigma^2}{1 - \gamma^2} \left\{ 1 - \frac{1}{T} - \frac{2\gamma}{(1 - \gamma)^2} \frac{(T - 1) - T\gamma + \gamma^T}{T^2} \right\}.$$
(12)

Remarks (i) Relations (11) and (12) show that $\hat{\gamma}$ is inconsistent for fixed *T*.

(ii) This is caused by having to eliminate the unknown individual effects μ_i from each observation, which creates correlation between $y_{i,t-1} - \bar{y}_{i,-1}$ and $v_{i,t} - \bar{v}_i$.

(iii) The inconsistency of the LSDV estimator holds whether μ_i are random or fixed.

(iv) The asymptotic bias will die out as T increases.

イロト イポト イヨト イヨト

• Consider the random effects model

$$y_{it} = \gamma y_{i,t-1} + \mu_i + v_{it}, (t = 1, ..., T; i = 1, ..., N),$$
 (13)

where μ_i is a random variable.

3

• The OLS estimator of γ is

$$\hat{\gamma} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} y_{it} y_{i,t-1}}{\sum_{i=1}^{N} \sum_{t=1}^{T} y_{i,t-1}^{2}} \\ = \gamma + \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} y_{it} (\mu_{i} + v_{it})}{\sum_{i=1}^{N} \sum_{t=1}^{T} y_{i,t-1}^{2}}$$

Using the same methods as in the previous subsection, we have

$$p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{it} (\mu_i + v_{it})$$

= $\frac{1}{T} \frac{1 - \gamma^T}{1 - \gamma} Cov(y_{i0}, \mu_i) + \frac{1}{T} \frac{\sigma^2}{(1 - \gamma)^2} \left[(T - 1) - T\gamma + \gamma^T \right]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dynamic Panels Inconsistency of the OLS estimator

and

$$\begin{split} p \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{i,t-1}^{2} &= \frac{1 - \gamma^{2T}}{T(1 - \gamma^{2})} \frac{\sum_{i=1}^{N} y_{i0}^{2}}{N} \\ &+ \frac{\sigma^{2}}{(1 - \gamma)^{2}} \frac{1}{T} \left(T - 2 \frac{1 - \gamma^{T}}{1 - \gamma} + \frac{1 - \gamma^{2T}}{1 - \gamma^{2}} \right) \\ &+ \frac{2}{T(1 - \gamma)} \left(\frac{1 - \gamma^{T}}{1 - \gamma} - \frac{1 - \gamma^{2T}}{1 - \gamma^{2}} \right) \operatorname{Cov}(\mu_{i}, y_{i0}) \\ &+ \frac{\sigma^{2}}{T(1 - \gamma^{2})^{2}} \left[(T - 1) - T\gamma^{2} + \gamma^{2T} \right]. \end{split}$$

Thus, the OLS estimator is not consistent.

Image: Image:

∃ ► < ∃ ►</p>

• Taking the difference of model (13), we obtain

$$y_{it} - y_{i,t-1} = \gamma (y_{i,t-1} - y_{i,t-2}) + v_{it} - v_{i,t-1}.$$

Since $y_{i,t-2} - y_{i,t-3}$ is uncorrelated with $v_{it} - v_{i,t-1}$ and correlated with $y_{i,t-1} - y_{i,t-2}$, it can be used as an instrument (cf. Anderson and Hsiao, 1981, JASA).

• For t = 3, we have

$$y_{i3} - y_{i2} = \gamma (y_{i,2} - y_{i,1}) + v_{i3} - v_{i,2}.$$

Thus, y_{i1} is a valid instrument.

Instrumental variables estimation

• For t = 4, we have

$$y_{i4} - y_{i3} = \gamma (y_{i3} - y_{i2}) + v_{i4} - v_{i3}$$

In this case, y_{i1} and y_{i2} are valid instruments.

• For period T, the set of instruments becomes $(y_{i1}, y_{i2}, ..., y_{i,T-2})$.

- ∢ ∃ →

Dynamic Panels

Instrumental variables estimation

• Letting
$$\Delta v_i = (v_{i3} - v_{i2}, ..., v_{iT} - v_{i,T-1})'$$
, we find

$$E\Delta v_i \Delta v'_i = \sigma_v^2 G,$$
where $G = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$

2

.

イロト イ団ト イヨト イヨト

Dynamic Panels

Instrumental variables estimation

Define

$$W_{i} = \begin{pmatrix} [y_{i1}] & & 0 \\ & [y_{i1}, y_{i2}] \\ & & \ddots \\ 0 & & & [y_{i1}, y_{i2}, \dots, y_{i.T-2}] \end{pmatrix}$$

and $W = [W'_1, ..., W'_N]'$. Premultiplying the differenced equation by W, we get

$$W'\Delta y = W'\Delta y_{-1}\gamma + W'\Delta v.$$

Performing GLS on this model, Arellano and Bond (1991, RES) obtains

$$\hat{\gamma} = \left[(\Delta y_{-1})' W(W'(I_N \otimes G)W)^{-1} W'(\Delta y_{-1}) \right]^{-1} \\ \times \left[(\Delta y_{-1})' W(W'(I_N \otimes G)W)^{-1} W'(\Delta y) \right].$$

イロト イポト イヨト イヨト

• The optimal GMM estimator is

$$\begin{split} \tilde{\gamma} &= \left[\left(\Delta y_{-1} \right)' W (\sum_{i=1}^{N} W_i' \left(\Delta v_i \right) \left(\Delta v_i \right)' W)^{-1} W' \left(\Delta y_{-1} \right) \right]^{-1} \\ &\times \left[\left(\Delta y_{-1} \right)' W (\sum_{i=1}^{N} W_i' \left(\Delta v_i \right) \left(\Delta v_i \right)' W)^{-1} W' \left(\Delta y \right) \right]. \end{split}$$

To make this estimator operational, replace Δv_i with $\Delta \hat{v}_i$ obtained from $\hat{\gamma}$.

ヨト イヨト

Instrumental variables estimation

• See also Arellano and Bover (1995, JoE), Blundell and Bond (1998, JoE) for related research.

-∢∃>

Exercises

1. Consider the panel data model

$$y_{it} = \mu + \beta x_{it} + u_{it}, (i = 1, ..., N; t = 1, ..., T)$$
 (14)

where $x_{it} \sim iid(0, \sigma_x^2)$, $u_{it} = \mu_i + v_{it}$, $v_{it} \sim iid(0, \sigma_v^2)$, and x_{it} is independent of v_{js} for all *i*, *t*, *j* and *s*.

a. Assuming that $N \to \infty$ and that T is fixed, calculate the variance of $\sqrt{N}(\hat{\beta}_{FE} - \beta)$, where $\hat{\beta}_{FE}$ is the fixed effect estimator of β . b. Consider the differenced model

$$\Delta y_{it} = \beta \Delta x_{it} + \Delta v_{it}.$$

Under the same assumptions as in part (a), calculate the variance $\sqrt{N}(\hat{\beta}_{OLS} - \beta)$, where $\hat{\beta}_{OLS}$ is the OLS estimator of β using the differenced model.

c. Which estimator is more efficient?

・ロト ・四ト ・ヨト ・ヨトー

Exercises

2. Consider the following two-period fixed effects model with a single regressor, x_{it}

$$y_{it} = \lambda_i + \alpha x_{it} + u_{it}, \ (i = 1, ..., n; \ t = 1, 2),$$
 (15)

where

$$x_{it} = z_i + a_{it} \text{ and } u_{it} = v_i + b_{it} \tag{16}$$

and z_i and v_i are random variables. As usual, λ_i is an individual effects variable correlated with x_{it} . Observed data are $\{y_{it}\}$ and $\{x_{it}\}$. But $\{z_i\}$ and $\{a_{it}\}$ are not separately observed. Random variables $\{a_{it}\}$ and $\{b_{it}\}$ bring time series variations to the observed data. For $\{a_{it}\}$ and $\{b_{it}\}$, assume

$$\begin{pmatrix} n^{\beta}a_{it}\\ n^{\gamma}b_{it} \end{pmatrix} \sim iid \left(0, \begin{bmatrix} \sigma_a^2 & 0\\ 0 & \sigma_b^2 \end{bmatrix}\right)$$
 for every *n*, *i* and *t*.

a. Show that the Within-OLS and first-differenced estimators are identical for this two-period fixed effects model.

(continued)

b. The first-differenced estimator is written as

$$\hat{\alpha}_{d} = \frac{\sum_{i=1}^{n} \Delta x_{i} \Delta y_{i}}{\sum_{i=1}^{n} (\Delta x_{i})^{2}} = \alpha + \frac{\sum_{i=1}^{n} \Delta a_{i} \Delta b_{i}}{\sum_{i=1}^{n} (\Delta a_{i})^{2}}$$

where $\Delta w_i = w_{i2} - w_{i1}$. Find the limiting distribution of $\frac{n^{\beta+\gamma}}{\sqrt{n}} \sum_{i=1}^n \Delta a_i \Delta b_i$ and the probability limit of $\frac{n^{2\beta}}{n} \sum_{i=1}^n (\Delta a_i)^2$ when $n \to \infty$. Using these results, find the limiting distribution of $n^{\frac{1}{2}-\beta+\gamma}(\hat{\alpha}_d - \alpha)$. c. When is the estimator $\hat{\alpha}_d$ consistent?