Advanced Econometrics

Chapter 12: Linear Models for Panel Data

In Choi

Sogang University

In Choi (Sogang University) Linear Models for Panel Data



Linear Models for Panel Data

Useful references:
o Badi Baltagi (2008) Econometric Analysis of Panel Data, 4th Edition,
John Wiley and Sons.

@ Cheng Hsiao (2003) Analysis of Panel Data, 2nd Edition, Cambridge
University Press.

e Cameron, A.C., and P.K. Trivedi (2005). Microeconometrics:
Methods and Applications. Cambridge University Press: New York.

e Wooldridge, J. (2002). Econometric Analysis of Cross Section and
Panel Data, The MIT Press.
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Basic framework

@ A general model for panel data

yie = DC+X;t;B+u/tv (i=1..nt=1..T) (1)
Ui =t Vit

i : households, individuals, firms, countries, etc.
t: time

« : a scalar coefficient

B : K x 1 coefficient vector

xit : the (i, t)—th observation on K regressors
; : unobservable individual specific effect

Vi - remainder disturbance term
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Basic framework

Example

Earnings equation

yit - earnings of the head of the household

X © a set of variables affecting earnings (experience, education, gender,
race, etc.).

u; : individual's unobserved ability
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Advantages of panel data

@ Large number of data points — better efficiency

@ Panel data allow a researcher to study a number of important
economic questions that cannot be addressed using cross-sectional or

time series data sets.

Linear Models for Panel Data
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Advantages of panel data

Example
Consider a simple linear regression model

Vit = o+ ‘BIX,'t + p/Z,'t + ujt.

If z; is unobservable and related to xj;, the OLS regression of y;;: on x;
yields biased estimate of B. However, if T > 2 (i.e., if panel data are
available),

Yie = Yie—1 = B (Xit — Xi.e—1) + Uit — Uj t—1.

Running OLS using this model, we can obtain a consistent estimate of f.
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The fixed effects model

@ Assumption

© y; are fixed parameters to be estimated. (It is usually assumed to be a
random variable correlated with the regressors.)

@ {x;:} and {vj;} are independent.

Q vt ~iid(0,02).
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The fixed effects model

@ The LSDV (least squares dummy variables) estimator of
Using matrix notation, write model (1) as

y=ant + XB+Zup+v (2)
where
y = DAL oo yet e Yot e YL o YT
InNT = [1,...,1]/;
]
X7
X = : ;
X/I\/1
Xyt
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The fixed effects model

Zy =Iy®uT;

w=py, oyl
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The fixed effects model

Let
P=2,2,2,)"Z,and Q=1 —P.

Premultiply model (2) by Q. The resulting model is
Qy = QXB+ Qu (3)
since @Z, = 0 and Quy7 = 0. The latter relation holds because
Qint = INT — Zy(Z;iZy)_IZ;ilNT

1 !
= INT — T4 duinT

INT = INT
0.
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The fixed effects model

@ Running OLS on model (3), we obtain the LSDV (least squares
dummy variables) estimator of B. This is

Brspv = (X'@X)71X'Qy.

This estimator is also called the Within-OLS estimator.
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The fixed effects model

Within-OLS estimator

o B,spy is equivalent to the OLS estimator from the model
Yie = Vi, = (Xit — %) B+ uir — 0; (4)

@ Parameters a and p; cannot be estimated separately.

@ Only a + p; can be estimated by

_ =1 -
Vi. = BrspvXi..

where z; = % Zthl Zjt.
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The fixed effects model

Within-OLS estimator

o If YV, 4, =0 (i.e., individual effects cancel out each other), y; can
be estimated. Averaging (1) over time gives

Vi =a+Bxi +u.+v (5)

Averaging across all observations in (1) and utilizing the restriction
YV, #; = 0, we obtain

y.=a+pBx +v, (6)
where z_ = - YN, Y]z From (6),
&=y.—PBrspyX.

We obtain from (5)
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The fixed effects model

Within-OLS estimator

o If there are any time invariant variables in the model (some elements
of x;+ are represented as z;), their coefficients cannot be estimated
because @ wipes out the variables.

o If T is fixed and N — oo, B, sp, is consistent.

o If T is fixed and N — oo, the OLS estimator of a + y; is inconsistent
(the incidental parameter problem). Intuitively, this happens because
the number of parameters increases at exactly the same rate as the
number of sample increases.

@ OLS on model (1) yields biased and inconsistent estimates of the
regression coefficients.
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The fixed effects model

First-differencing estimator

@ The first-differencing gives
Ayir = DX+ Avje.

The individual effects variable ¢, is eliminated by the first-differencing.
@ Running OLS on this model gives a consistent estimator of B.

@ The variance-covariance matrix of the first-differencing estimator is
-1
E[(Z,N:l i AXitAX,{t) <E/N:1 D I AXitAX;sAVitAViS)
N T N\t
X ( i=1 Lt=1 AXffAXit) J.
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The fixed effects model

First-differencing estimator

@ The variance-covariance matrix is estimated by

1

<Z,N:1 Y AXitAX,{r> (ZIN:]. OHRD D AXitAXftAVitAVis>
)

X (ZIN:I Zthl AXitAXi’t) '

where AV, is the residual from the first-differencing estimation.

@ When T = 2, the Within-OLS and first-differencing estimators are
equivalent.
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The fixed effects model

uip = W; + At + Vi,

where A; denotes the time-specific variable common to every
individual, B, sp, is equivalent to the OLS estimator from the model

Vie— Vi =V +y.=(xit — % — X + X ) B+ ur — 0, — 0. + 0.,

where z; = % Z,’-V:l Zjt
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The fixed effects model

Testing for fixed effects

o Assume YV, #; = 0 and consider the null hypothesis

Ho:py=py=...=puy ;=0

Under this null, there are no fixed effects. This can be tested by
Chow test. Let

RRSS : restricted residual sum of squares from OLS

URSS : unrestricted residual sum of squares from LSDV

Then,

_ (RRSS—URSS)/(N—1)
~ URSS/(NT — N —K) N—-1N(T-1)-K

under v;; ~ iidN(0, o%).
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The fixed effects model

e Estimator of 02
Let @i be the residual from the regression on (4). Then,

The divisor is chosen to be NT — N — K in order to make 0°
unbiased.
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The random effects model

@ Assumption

Q y; ~iid(0,0%); vir ~ iid(0,02).
@ ; are independent of vj;.
© Xx;: are independent of y; and vj; for all i and t.

@ In the random effects model, there is no need for estimating y;.
Estimating O'i is good enough.
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The random effects model

GLS estimation of the random effects model

@ Write the model as
yi LT X1 u
: = : + : B+ : )
YN LT Xn uy

where 17 = [1, ..., 1]". The variance-covariance matrix of u; is for all i

V = E(uu)) = oty + 07
O’iJT +U'€/T
TU"%._/T + 0'3._/7' —|—0"2/(/T — ._/T) (._/7' =Jr/ T)

= (TO’ft —|—U€)JT —|—(T\2,(/T — ._/T)
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The random effects model

GLS estimation of the random effects model

e Note that Jr and (/7 — J7) are idempotent matrices and that

._/T(/T — ._/T) =0.
The inverse of matrix of V is
1 - 1 _
vt = —— ] —(l+—=J
Tos + 03 T+U§<T r)
1
= (Ur=Jr)+ypJr)
1 _
= ﬁ (Q + ¢JT) y
a2
Where ll) = W
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The random effects model

GLS estimation of the random effects model

o Let 6 = (a,B') and X; = [t7 X;]. The normal equations for the GLS
estimator of ¢ are written as

X'V1X;

Mz

Il
—

i=1

ZX’V y,] : (7)
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The random effects model

GLS estimation of the random effects model

@ Since

N
Y XVIIX = ;%[(TX‘—BW)JF‘/JBW]

1
) [Whss + ¢Bxs] -

v
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The random effects model

GLS estimation of the random effects model

@ In the same manner, letting

ZXy,, ey = Zx Iryi: Wsy = Txy — Bsy,

we obtain

- 1
'Vl = S [(Tzy — Bxy) + ¥Bxy]

o

1
= o2 [ny + lpry]

M=

Il
—

Thus, the normal equation (7) becomes

[Wss + ¢ Bxx] o= Wy +9¥Bsy].
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The random effects model

GLS estimation of the random effects model

o Further calculations give, letting z; = % Zj;l Zit,

1 .
[ YNT - YTELX ] [ fLs ]
PTEN % T XQX + 9T LY, %% BeLs

R
Y X Qyi + 9T, %y

from which we obtain
. 1 N -1
Pas = |7 Z:X,’QX;+¢T Z()‘q — %) (% —x)'

i yHrlPTZ i =)
Tt 1

7
= AB,+ MBispy:
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The random effects model

GLS estimation of the random effects model

where
N N -1
e
N
X Z;(x,-—x)(x,—x)’],
R N i
By, = [_Xi(?f.—x.)<)‘<f.—x.)’] [2(%.—2.)(%.—?..)1

@ The estimator Bb is called the between-group estimator because it
ignores variation within the group. This formula shows that the 5, ¢

is a weighted average of Bb and B, spy -

Linear Models for Panel Data
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The random effects model

GLS estimation of the random effects model

o In addition,
A - A/ —_
flos =Y. — BgrsX..-
1

o Var(BgLs) =02 {Z XIQX;i + TN (% — %) (% — x)’]
o Var(B,spy) — Var(BgLs) > 0. (Use the relation

A > B implies B71 > A~1
and the fact that i > 0 to show this.)

o For fixed N, i — 0 as T — co. Thus, for large T, B, spy and Bgs
are close to each other.
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The random effects model

o Estimating (Ti and o2
Note that
Vi.=a+ BXi +u;, + v
and
Yie — ¥i. = (xit — %i.)' B+ vie — V..

Thus, we can use the LSDV and between group residuals. That is,

_ 2
vl [(Yit —¥i.) = Brspy (xit — Xi.)]
N(T—1)—K

62 =

and N R
52 — Yty (7 — &y — Bpxi)® 102
H N—(K+1) TV
Using these, the FGLS estimator can be devised. Note that the divisor
for 62 is chosen to be NT — N — T in order to make it unbiased.
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The random effects model
o Let
0—2
A=1— =t
TU% +02

@ The RE estimator is also obtained by running regression on
Yie — Ay, = B (xie — A%;) + ujp — AT .

@ If A =1, then this is just the fixed effects estimator.
@ So, the bigger the variance of the unobserved effect, the closer it is to

FE.

Linear Models for Panel Data
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Comparing the fixed- and random- effects models

@ The fixed-effects model do not require assuming that the individual
effect variable and the regressors are independent.

@ The fixed-effects model has the problem of incidental parameters.

@ In the random-effects model, the number of parameters is fixed and
efficient estimation methods can be derived.

@ In the random-effects model, one has to assume no correlation
between the individual effect variable and the regressors.
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Comparing the fixed- and random- effects models

@ Hausman's test

o Ho: E(p;|xit) =0
o Test statistic

m= (Brspv —Bors) (Var(Brspy) — Vc‘”(BGLs)Y1 (BLspv —Bers)

o As N — oo, mi>X2(K).
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Estimation of models with individual specific variables

@ The model and estimation

vie = a+Bxe+0'z+ up; (8)
Ui = W, + Vvi.

The LSDV estimator of 8 is, as before,

Brspv = (X'@X)71X'Qy.
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Estimation of models with individual specific variables

@ The individual mean over time satisfies
Vi —XB=a+pz+u +v.

If ¢, are random variables uncorrelated with the regressors, the
parameters & and p are estimated by running OLS on this model
assuming ji; + ;. is an error term and substituting B, sp,, for p.
These estimators are consistent when N — co.

In Choi (Sogang University) Linear Models for Panel Data



Estimation of models with individual specific variables

e More efficient estimators of a, B and p can be obtained by GLS (cf.
Hsiao, p.53)

@ Model (8) can further be generalized by the specification

Yie = 0‘+,3/Xit+P/Zi+’)’,Wt+Uit;
uip = M+ A+ Vi

See Hsiao for further details.
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Dynamic Panels

Inconsistency of the LSDV estimator

@ Consider the model
Yie =0+ yi—1+p+vie, (0=1,...,T;i=1_..N).

@ Assume

Q |7 <L

© y;o are observable.

Q vt ~ iid(0,c?) for all i.

Q@ {vit},....{vn:} are independent.
@ E(vitp;) =0forall jand t.
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Dynamic Panels

Inconsistency of the LSDV estimator

@ The LSDV estimator of 7 is

§ = YN Yl Wie = 7)) Yie—1 — Vi—1)
Y Sl (Vi1 — Vi1)?
MY ie—1 = Vi1) (Vie — %) /NT
MYl iWiee1 —7i-1)2/NT '
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Dynamic Panels

Inconsistency of the LSDV estimator

Continuous substitution gives

YIt:Vit+'YVi,t—1+---+')’t V:1+ (“+ﬂ)+’¥y/0-
Summing y; ;—1 over t, we have

T

1—97 (T-1)—-Ty+9"

Yit—-1 = Yio + &+ 10
L 17 a—pr @t 00
1— T-1 1— T-2
+#Vi1 + ¢Vi2 +otviTo1
-9 1—v

In Choi (Sogang University) Linear Models for Panel Data



Dynamic Panels

Inconsistency of the LSDV estimator

To analyze the probability limit of the numerator of estimator (9), consider
the relations

PAJTOOWEE(YM 1= Yi-1)(Vie — V)

i=1t=

= p I| wNTZZ(y,t 1= Vi—1)Vit

= —p 'Tloﬁ Zy, 17,

where the second equality follows since
: 1 vN T
plimy e NT Y Zt:1 Yit—1Vi,e = 0.
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Dynamic Panels

Inconsistency of the LSDV estimator

But using (10) and the given assumptions, we find

? (T—1) = Ty+oT
Zy,_lv,— (T=D=Todr gy

P T -y

N—o0 NT

which is the probability limit of the numerator of estimator (9). Similarly,
for the denominator of estimator (9), we obtain

;
Y (Vi1 —¥i-1)?/NT
=1t=1

2y (T-1)—-Ty++7

Mz

—_

p lim
Pyl
I
o?
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Dynamic Panels

Inconsistency of the LSDV estimator

Remarks (i) Relations (11) and (12) show that 4 is inconsistent for
fixed T.
(ii) This is caused by having to eliminate the unknown
individual effects u; from each observation, which creates
correlation between y; ;1 — ¥ —1 and v;; — ¥;.
(iii) The inconsistency of the LSDV estimator holds whether
u; are random or fixed.
(iv) The asymptotic bias will die out as T increases.
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Dynamic Panels

Inconsistency of the OLS estimator

@ Consider the random effects model
Yit = VYit—1+ U; + Vit, (t=1,...T;i=1,.,N),

where u; is a random variable.
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Dynamic Panels

Inconsistency of the OLS estimator

@ The OLS estimator of y is

S Y YieYie 1
/I'V:I Zthl Y,-2,t_1
ZlNlZileit( +V/t)
21 121‘ IY,t 1

Using the same methods as in the previous subsection, we have

p I|m —ZZy,t 1+ Vvie)

llt

11—+T 1 o

= < T Cov(yio. ;) + =

¥ =
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Dynamic Panels

Inconsistency of the OLS estimator

and
1—72 2':1}/%
li - — I i
Pl NTIZ;tZy’tl T1—-72) N
2 _ AT _A2T
PRI L Sl G Sk
(1=7)2T 1—y  1—12
2 1—97 1-—972 >
+ Cov(;, yic
T(l—v)(l—v 1—92 (¥
2
(0
T—1)—Ty*+9%7
+T(1—'y) [( ) L }

Thus, the OLS estimator is not consistent.
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Dynamic Panels

Instrumental variables estimation

e Taking the difference of model (13), we obtain

Vit = Yit-1 =Y Vie—1 — Vi,t—2) + Vie — Vir—1.

Since yj+—2 — yit—3 is uncorrelated with vjz — v; ;—1 and correlated
with y; ¢—1 — yj t—2, it can be used as an instrument (cf. Anderson
and Hsiao, 1981, JASA).

@ For t = 3, we have
yiz—Yi2o =77 (Yi2 —yi1) + vis — vio.

Thus, yj1 is a valid instrument.
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Dynamic Panels

Instrumental variables estimation

@ For t = 4, we have
yia — Yiz =7 (Vi — yi2) + via — vi3

In this case, yj1 and yjo are valid instruments.

@ For period T, the set of instruments becomes (yi1, Yi2, ..., Yi.T—2)-
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Dynamic Panels

Instrumental variables estimation

o Letting Av; = (vi3 — Vj2, ..., Vit — v;,7—1)’, we find

EAv,AV! = 02G,

2 -1. 0 --- 0 0 O

-1 2 -1 0o 0 O

0o -1 2 0o 0 O
where G = :

0O 0 O 2 -1 0

0o 0 O -1 2 -1

0 0 O o -1 2
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Dynamic Panels

Instrumental variables estimation

@ Define

[yi1] 0
[)4'1 ' )/iz]

0 Vi1, Yios o Yi T—2]

and W = [W/, ..., W},]". Premultiplying the differenced equation by
W, we get
W'Ay = WAy 19+ W'Av.

Performing GLS on this model, Arellano and Bond (1991, RES)
obtains
. _ -1
¥ = [(Ay-) WW (Iy® G)W)TW' (Ay_1)]
x [(Ay—1) W(W'(Iy @ G)W) W (Ay)] .
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Dynamic Panels

Instrumental variables estimation

@ The optimal GMM estimator is

¥y = [(AY—I)/ W(i W (Avi) (Avi) W)1W’(AY—1)]
i=1

X [(Ay_l)' W(i W! (Av;) (Av;) W)W’ (Ay)] .

To make this estimator operational, replace Av; with AV; obtained
from %.

In Choi (Sogang University) Linear Models for Panel Data



Dynamic Panels

Instrumental variables estimation

@ See also Arellano and Bover (1995, JoE), Blundell and Bond (1998,
JoE) for related research.
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Exercises

1. Consider the panel data model
yie =p+Bxie+up, (i=1,..,N;t=1,..,T) (14)

where x; ~ iid(0,02), ujir = p; + Vit, vie ~ iid(0,02), and x;¢ is
independent of vjs for all i, t,j and s.

a. Assuming that N — oo and that T is fixed, calculate the variance of
V/N(Brz — B), where B, is the fixed effect estimator of B.

b. Consider the differenced model

Ay = ,BAXit + Avit.

Under the same assumptions as in part (a), calculate the variance
V/N(Bo;s — B). where By, s is the OLS estimator of f using the
differenced model.

c. Which estimator is more efficient?
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Exercises

2. Consider the following two-period fixed effects model with a single
regressor, Xit

Vit = Aj + axj + Ui, (i:1,...,n; t:1,2>, (15)

where
Xit = z; + a; and u;y = v; + bj; (16)

and z; and v; are random variables. As usual, A; is an individual effects
variable correlated with x;;. Observed data are {y;:} and {x;:}. But {z}
and {a;;} are not separately observed. Random variables {a;;} and {b;}
bring time series variations to the observed data. For {a;} and {b;},
assume

”ﬁait .. a§ 0 ]
( 7 by ) ~ iid <0, [ 0 o2 ]) for every n, i and t.

a. Show that the Within-OLS and first-differenced estimators are identical
for this two-period fixed effects model.
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Exercises

(continued)
b. The first-differenced estimator is written as

~ Z,— AXIAyI Z?:l AajAb;
bg = = ——5 =40+ = ———5
-1 (AX/) -1 (Ma))

where Aw; = wi — wj1. Find the limiting distribution of 7~ YT AaiAb;

and the probability limit of # 1, (Aa;)® when n — co. Usmg these
. o 1 .

results, find the limiting distribution of n2=A*7 (&, — a).

c. When is the estimator &, consistent?
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