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Linear Models for Panel Data

Useful references:

Badi Baltagi (2008) Econometric Analysis of Panel Data, 4th Edition,
John Wiley and Sons.

Cheng Hsiao (2003) Analysis of Panel Data, 2nd Edition, Cambridge
University Press.

Cameron, A.C., and P.K. Trivedi (2005). Microeconometrics:
Methods and Applications. Cambridge University Press: New York.

Wooldridge, J. (2002). Econometric Analysis of Cross Section and
Panel Data, The MIT Press.
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Basic framework

A general model for panel data

yit = α+ x 0itβ+ uit , (i = 1, ..., n, t = 1, ...,T ) (1)

uit = µi + νit .

i : households, individuals, �rms, countries, etc.
t : time
α : a scalar coe¢ cient
β : K � 1 coe¢ cient vector
xit : the (i , t)�th observation on K regressors
µi : unobservable individual speci�c e¤ect
νit : remainder disturbance term

In Choi (Sogang University) Linear Models for Panel Data 3 / 53



Basic framework

Example
Earnings equation
yit : earnings of the head of the household
xit : a set of variables a¤ecting earnings (experience, education, gender,
race, etc.).
µi : individual�s unobserved ability
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Advantages of panel data

Large number of data points �better e¢ ciency

Panel data allow a researcher to study a number of important
economic questions that cannot be addressed using cross-sectional or
time series data sets.
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Advantages of panel data

Example
Consider a simple linear regression model

yit = α+ β0xit + ρ0zit + uit .

If zi is unobservable and related to xit , the OLS regression of yit on xit
yields biased estimate of β. However, if T � 2 (i.e., if panel data are
available),

yit � yi ,t�1 = β0(xit � xi ,t�1) + uit � ui ,t�1.
Running OLS using this model, we can obtain a consistent estimate of β.

In Choi (Sogang University) Linear Models for Panel Data 6 / 53



The �xed e¤ects model

Assumption
1 µi are �xed parameters to be estimated. (It is usually assumed to be a
random variable correlated with the regressors.)

2 fxitg and fvitg are independent.
3 νit � iid(0, σ2ν).
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The �xed e¤ects model

The LSDV (least squares dummy variables) estimator of β
Using matrix notation, write model (1) as

y = αιNT + X β+ Zµµ+ ν (2)

where

y = [y11, ..., y1T , y21, ..., y2T , ..., yN1, ..., yNT ]
0;

ιNT = [1, ..., 1]0;

X =

2666666666664

x 011
...
x 01T
...
x 0N1
...
x 0NT

3777777777775
;

µ = [µ1, ..., µN ]
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The �xed e¤ects model

Zµ = IN 
 ιT ;

µ = [µ1, ..., µN ]
0
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The �xed e¤ects model

Let
P = Zµ(Z 0µZµ)

�1Z 0µ and Q = I � P.
Premultiply model (2) by Q. The resulting model is

Qy = QX β+Qν (3)

since QZµ = 0 and Q ιNT = 0. The latter relation holds because

Q ιNT = ιNT � Zµ(Z 0µZµ)
�1Z 0µιNT

= ιNT �
1
T
ZµZ 0µιNT

= ιNT � ιNT

= 0.
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The �xed e¤ects model

Running OLS on model (3), we obtain the LSDV (least squares
dummy variables) estimator of β. This is

β̃LSDV = (X
0QX )�1X 0Qy .

This estimator is also called the Within-OLS estimator.
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The �xed e¤ects model
Within-OLS estimator

β̃LSDV is equivalent to the OLS estimator from the model

yit � ȳi . = (xit � x̄i .)0β+ uit � ūi . (4)

Parameters α and µi cannot be estimated separately.

Only α+ µi can be estimated by

ȳi . � β̃
0
LSDV x̄i .,

where z̄i . = 1
T ∑T

t=1 zit .
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The �xed e¤ects model
Within-OLS estimator

If ∑N
i=1 µi = 0 (i.e., individual e¤ects cancel out each other), µi can

be estimated. Averaging (1) over time gives

ȳi . = α+ β0x̄i . + µi + v̄i . (5)

Averaging across all observations in (1) and utilizing the restriction
∑N
i=1 µi = 0, we obtain

ȳ.. = α+ β0x̄.. + v̄.., (6)

where z̄.. = 1
NT ∑N

i=1 ∑T
t=1 zit . From (6),

α̃ = ȳ.. � β̃
0
LSDV x̄...

We obtain from (5)

µ̃i = ȳi . � α̃� β̃
0
LSDV x̄i .
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The �xed e¤ects model
Within-OLS estimator

If there are any time invariant variables in the model (some elements
of xit are represented as zi ), their coe¢ cients cannot be estimated
because Q wipes out the variables.

If T is �xed and N ! ∞, β̃LSDV is consistent.

If T is �xed and N ! ∞, the OLS estimator of α+ µi is inconsistent
(the incidental parameter problem). Intuitively, this happens because
the number of parameters increases at exactly the same rate as the
number of sample increases.

OLS on model (1) yields biased and inconsistent estimates of the
regression coe¢ cients.
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The �xed e¤ects model
First-di¤erencing estimator

The �rst-di¤erencing gives

∆yit = ∆x 0itβ+ ∆vit .

The individual e¤ects variable µi is eliminated by the �rst-di¤erencing.

Running OLS on this model gives a consistent estimator of β.

The variance-covariance matrix of the �rst-di¤erencing estimator is

E [
�

∑N
i=1 ∑T

t=1 ∆xit∆x 0it
��1 �

∑N
i=1 ∑T

t=1 ∑T
s=1 ∆xit∆x 0is∆vit∆vis

�
�
�

∑N
i=1 ∑T

t=1 ∆xit∆x 0it
��1

].
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The �xed e¤ects model
First-di¤erencing estimator

The variance-covariance matrix is estimated by�
∑N
i=1 ∑T

t=1 ∆xit∆x 0it
��1 �

∑N
i=1 ∑T

t=1 ∑T
s=1 ∆xit∆x 0it∆v̂it∆v̂is

�
�
�

∑N
i=1 ∑T

t=1 ∆xit∆x 0it
��1

,

where ∆v̂it is the residual from the �rst-di¤erencing estimation.

When T = 2, the Within-OLS and �rst-di¤erencing estimators are
equivalent.
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The �xed e¤ects model

If
uit = µi + λt + νit ,

where λt denotes the time-speci�c variable common to every
individual, β̃LSDV is equivalent to the OLS estimator from the model

yit � ȳi . � ȳt . + ȳ.. = (xit � x̄i . � x̄t . + x̄..)0β+ uit � ūi . � ūt . + ū..,

where z̄t . = 1
N ∑N

i=1 zit
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The �xed e¤ects model
Testing for �xed e¤ects

Assume ∑N
i=1 µi = 0 and consider the null hypothesis

H0 : µ1 = µ2 = ... = µN�1 = 0.

Under this null, there are no �xed e¤ects. This can be tested by
Chow test. Let
RRSS : restricted residual sum of squares from OLS
URSS : unrestricted residual sum of squares from LSDV
Then,

F =
(RRSS � URSS)/(N � 1)
URSS/(NT �N �K ) � FN�1,N (T�1)�K

under vit � iidN(0, σ2).
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The �xed e¤ects model

Estimator of σ2

Let ûit be the residual from the regression on (4). Then,

σ̂2 =
1

NT �N �K
N

∑
i=1

T

∑
t=1
û2it .

The divisor is chosen to be NT �N �K in order to make σ̂2

unbiased.

In Choi (Sogang University) Linear Models for Panel Data 19 / 53



The random e¤ects model

Assumption
1 µi � iid(0, σ2µ); vit � iid(0, σ2v ).
2 µi are independent of vit .
3 xit are independent of µi and vit for all i and t.

In the random e¤ects model, there is no need for estimating µi .
Estimating σ2µ is good enough.
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The random e¤ects model
GLS estimation of the random e¤ects model

Write the model as0B@ y1
...
yN

1CA = α

0B@ ιT
...

ιT

1CA+
0B@ X1

...
XN

1CA β+

0B@ u1
...
uN

1CA ,
where ιT = [1, ..., 1]0. The variance-covariance matrix of ui is for all i

V = E (uiu0i ) = σ2µιT ι0T + σ2v IT

= σ2µJT + σ2v IT

= Tσ2µJ̄T + σ2v J̄T + σ2v (IT � J̄T ) (J̄T = JT /T )

= (Tσ2µ + σ2v )J̄T + σ2v (IT � J̄T ).
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The random e¤ects model
GLS estimation of the random e¤ects model

Note that J̄T and (IT � J̄T ) are idempotent matrices and that
J̄T (IT � J̄T ) = 0.
The inverse of matrix of V is

V�1 =
1

Tσ2µ + σ2v
J̄T +

1
σ2v
(IT � J̄T )

=
1

σ2v
((IT � J̄T ) + ψJ̄T )

=
1

σ2v
(Q + ψJ̄T ) ,

where ψ = σ2v
T σ2µ+σ2v

.
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The random e¤ects model
GLS estimation of the random e¤ects model

Let δ = (α, β0)0 and X̃i = [ιT Xi ]. The normal equations for the GLS
estimator of δ are written as"

N

∑
i=1
X̃ 0i V

�1X̃i

#
δ̂ =

"
N

∑
i=1
X̃ 0i V

�1yi

#
. (7)
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The random e¤ects model
GLS estimation of the random e¤ects model

Since

X̃ 0i V
�1X̃i =

1
σ2v
X̃ 0i (Q + ψJ̄T ) X̃i

=
1

σ2v

�
X̃ 0i X̃i � X̃ 0i J̄T X̃i + ψX̃ 0i J̄T X̃i

�
,

letting

Tx̄ x̄ =
N

∑
i
X̃ 0i X̃i ;Bx̄ x̄ =

N

∑
i
X̃ 0i J̄T X̃i ;Wx̄ x̄ = Tx̄ x̄ � Bx̄ x̄

we may write
N

∑
i=1
X̃ 0i V

�1X̃i =
1

σ2v
[(Tx̄ x̄ � Bx̄ x̄ ) + ψBx̄ x̄ ]

=
1

σ2v
[Wx̄ x̄ + ψBx̄ x̄ ] .
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The random e¤ects model
GLS estimation of the random e¤ects model

In the same manner, letting

Tx̄ y =
N

∑
i
X̃ 0i yi ;Bx̄ y =

N

∑
i
X̃ 0i J̄T yi ;Wx̄ y = Tx̄ y � Bx̄ y ,

we obtain

N

∑
i=1
X̃ 0i V

�1yi =
1

σ2v
[(Tx̄ y � Bx̄ y ) + ψBx̄ y ]

=
1

σ2v
[Wx̄ y + ψBx̄ y ] .

Thus, the normal equation (7) becomes

[Wx̄ x̄ + ψBx̄ x̄ ] δ̂ = [Wx̄ y + ψBx̄ y ] .
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The random e¤ects model
GLS estimation of the random e¤ects model

Further calculations give, letting z̄i = 1
T ∑T

t=1 zit ,�
ψNT ψT ∑N

i=1 x̄
0
i

ψT ∑N
i=1 x̄i ∑N

i=1 X
0
i QXi + ψT ∑N

i=1 x̄i x̄
0
i

��1 �
α̂GLS
β̂GLS

�
=

�
ψNTȳ

∑N
i=1 X

0
i Qyi + ψT ∑N

i=1 x̄i ȳ
0
i

�
,

from which we obtain

β̂GLS =

"
1
T

N

∑
i=1
X 0i QXi + ψT

N

∑
i=1
(x̄i � x̄)(x̄i � x̄)0

#�1

�
"
1
T

N

∑
i=1
X 0i Qyi + ψT

N

∑
i=1
(x̄i � x̄)(ȳi � ȳ)0

#
= ∆β̂b + (I � ∆)β̃LSDV ,
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The random e¤ects model
GLS estimation of the random e¤ects model

where

∆ = ψT

"
N

∑
i=1
X 0i QXi + ψT

N

∑
i=1
(x̄i � x̄)(x̄i � x̄)0

#�1

�
"
N

∑
i=1
(x̄i � x̄)(x̄i � x̄)0

#
,

β̂b =

"
N

∑
i=1
(x̄i . � x̄..)(x̄i . � x̄..)0

#�1 " N

∑
i=1
(x̄i . � x̄..)(ȳi . � ȳ..)0

#
.

The estimator β̂b is called the between-group estimator because it
ignores variation within the group. This formula shows that the β̂GLS
is a weighted average of β̂b and β̃LSDV .
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The random e¤ects model
GLS estimation of the random e¤ects model

In addition,
µ̂GLS = ȳ.. � β̂

0
GLS x̄...

Var(β̂GLS ) = σ2v

h
∑Ni=1 X

0
i QXi + ψT ∑Ni=1(x̄i � x̄)(x̄i � x̄)0

i�1
.

Var(β̃LSDV )� Var(β̂GLS ) � 0. (Use the relation

A � B implies B�1 � A�1

and the fact that ψ > 0 to show this.)
For �xed N, ψ ! 0 as T ! ∞. Thus, for large T , β̃LSDV and β̂GLS
are close to each other.
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The random e¤ects model

Estimating σ2µ and σ2v
Note that

ȳi . = α+ βx̄i . + µi + v̄i .

and
yit � ȳi . = (xit � x̄i .)0β+ vit � v̄i ..

Thus, we can use the LSDV and between group residuals. That is,

σ̂2v =
∑N
i=1 ∑T

t=1

h
(yit � ȳi .)� β̃

0
LSDV (xit � x̄i .)

i2
N(T � 1)�K

and

σ̂2µ =
∑N
i=1(ȳi . � α̂b � β̂b x̄i .)

2

N � (K + 1) � 1
T

σ2v .

Using these, the FGLS estimator can be devised. Note that the divisor
for σ̂2v is chosen to be NT �N � T in order to make it unbiased.
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The random e¤ects model

Let

λ = 1�
s

σ2v
Tσ2µ + σ2v

.

The RE estimator is also obtained by running regression on

yit � λȳi . = β0(xit � λx̄i .) + uit � λūi ..

1 If λ = 1, then this is just the �xed e¤ects estimator.
2 So, the bigger the variance of the unobserved e¤ect, the closer it is to
FE.
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Comparing the �xed- and random- e¤ects models

The �xed-e¤ects model do not require assuming that the individual
e¤ect variable and the regressors are independent.

The �xed-e¤ects model has the problem of incidental parameters.

In the random-e¤ects model, the number of parameters is �xed and
e¢ cient estimation methods can be derived.

In the random-e¤ects model, one has to assume no correlation
between the individual e¤ect variable and the regressors.
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Comparing the �xed- and random- e¤ects models

Hausman�s test

H0 : E (µi j xit ) = 0
Test statistic

m = (β̃LSDV � β̂GLS )
0 �Var(β̃LSDV )� Var(β̂GLS )��1 (β̃LSDV � β̂GLS )

As N ! ∞, m d! χ2(K ).
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Estimation of models with individual speci�c variables

The model and estimation

yit = α+ β0xit + ρ0zi + uit ; (8)

uit = µi + vit .

The LSDV estimator of β is, as before,

β̃LSDV = (X
0QX )�1X 0Qy .
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Estimation of models with individual speci�c variables

The individual mean over time satis�es

ȳi . � x̄ 0i .β = α+ ρ0zi + µi + v̄i .

If µi are random variables uncorrelated with the regressors, the
parameters α and ρ are estimated by running OLS on this model
assuming µi + v̄i . is an error term and substituting β̃LSDV for β.
These estimators are consistent when N ! ∞.
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Estimation of models with individual speci�c variables

More e¢ cient estimators of α, β and ρ can be obtained by GLS (cf.
Hsiao, p.53)

Model (8) can further be generalized by the speci�cation

yit = α+ β0xit + ρ0zi + γ0wt + uit ;

uit = µi + λt + vit .

See Hsiao for further details.
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Dynamic Panels
Inconsistency of the LSDV estimator

Consider the model

yit = α+ γyi ,t�1 + µi + vit , (t = 1, ...,T ; i = 1, ...,N).

Assume
1 jγj < 1.
2 yi0 are observable.
3 vit � iid(0, σ2) for all i .
4 fv1tg, ..., fvNtg are independent.
5 E (vitµi ) = 0 for all i and t.
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Dynamic Panels
Inconsistency of the LSDV estimator

The LSDV estimator of γ is

γ̂ =
∑N
i=1 ∑T

t=1(yit � ȳi )(yi ,t�1 � ȳi ,�1)
∑N
i=1 ∑T

t=1(yi ,t�1 � ȳi ,�1)2
(9)

= γ+
∑N
i=1 ∑T

t=1(yi ,t�1 � ȳi ,�1)(vi ,t � v̄i )/NT
∑N
i=1 ∑T

t=1(yi ,t�1 � ȳi ,�1)2/NT
.
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Dynamic Panels
Inconsistency of the LSDV estimator

Continuous substitution gives

yit = vit + γvi ,t�1 + ...+ γt�1vi1 +
1� γt

1� γ
(α+ µi ) + γtyi0.

Summing yi ,t�1 over t, we have

T

∑
t=1
yi ,t�1 =

1� γT

1� γ
yi0 +

(T � 1)� Tγ+ γT

(1� γ)2
(α+ µi ) (10)

+
1� γT�1

1� γ
vi1 +

1� γT�2

1� γ
vi2 + ...+ vi ,T�1.
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Dynamic Panels
Inconsistency of the LSDV estimator

To analyze the probability limit of the numerator of estimator (9), consider
the relations

p lim
N!∞

1
NT

N

∑
i=1

T

∑
t=1
(yi ,t�1 � ȳi ,�1)(vi ,t � v̄i )

= p lim
N!∞

1
NT

N

∑
i=1

T

∑
t=1
(yi ,t�1 � ȳi ,�1)vi ,t

= �p lim
N!∞

1
N

N

∑
i=1
ȳi ,�1v̄i ,

where the second equality follows since
p limN!∞

1
NT ∑N

i=1 ∑T
t=1 yi ,t�1vi ,t = 0.
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Dynamic Panels
Inconsistency of the LSDV estimator

But using (10) and the given assumptions, we �nd

�p lim
N!∞

1
NT

N

∑
i=1
ȳi ,�1v̄i = �

σ2

T 2
(T � 1)� Tγ+ γT

(1� γ)2
, (11)

which is the probability limit of the numerator of estimator (9). Similarly,
for the denominator of estimator (9), we obtain

p lim
N!∞

N

∑
i=1

T

∑
t=1
(yi ,t�1 � ȳi ,�1)2/NT

=
σ2

1� γ2

�
1� 1

T
� 2γ

(1� γ)2
(T � 1)� Tγ+ γT

T 2

�
. (12)
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Dynamic Panels
Inconsistency of the LSDV estimator

Remarks (i) Relations (11) and (12) show that γ̂ is inconsistent for
�xed T .
(ii) This is caused by having to eliminate the unknown
individual e¤ects µi from each observation, which creates
correlation between yi ,t�1 � ȳi ,�1 and vi ,t � v̄i .
(iii) The inconsistency of the LSDV estimator holds whether
µi are random or �xed.
(iv) The asymptotic bias will die out as T increases.
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Dynamic Panels
Inconsistency of the OLS estimator

Consider the random e¤ects model

yit = γyi ,t�1 + µi + vit , (t = 1, ...,T ; i = 1, ...,N), (13)

where µi is a random variable.
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Dynamic Panels
Inconsistency of the OLS estimator

The OLS estimator of γ is

γ̂ =
∑N
i=1 ∑T

t=1 yityi ,t�1
∑N
i=1 ∑T

t=1 y
2
i ,t�1

= γ+
∑N
i=1 ∑T

t=1 yit (µi + vit )

∑N
i=1 ∑T

t=1 y
2
i ,t�1

.

Using the same methods as in the previous subsection, we have

p lim
N!∞

1
NT

N

∑
i=1

T

∑
t=1
yit (µi + vit )

=
1
T
1� γT

1� γ
Cov(yi0, µi ) +

1
T

σ2

(1� γ)2

h
(T � 1)� Tγ+ γT

i
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Dynamic Panels
Inconsistency of the OLS estimator

and

p lim
N!∞

1
NT

N

∑
i=1

T

∑
t=1
y2i ,t�1 =

1� γ2T

T (1� γ2)
∑N
i=1 y

2
i0

N

+
σ2

(1� γ)2
1
T

�
T � 21� γT

1� γ
+
1� γ2T

1� γ2

�
+

2
T (1� γ)

�
1� γT

1� γ
� 1� γ2T

1� γ2

�
Cov(µi , yi0)

+
σ2

T (1� γ2)2

h
(T � 1)� Tγ2 + γ2T

i
.

Thus, the OLS estimator is not consistent.
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Dynamic Panels
Instrumental variables estimation

Taking the di¤erence of model (13), we obtain

yit � yi ,t�1 = γ (yi ,t�1 � yi ,t�2) + vit � vi ,t�1.

Since yi ,t�2 � yi ,t�3 is uncorrelated with vit � vi ,t�1 and correlated
with yi ,t�1 � yi ,t�2, it can be used as an instrument (cf. Anderson
and Hsiao, 1981, JASA).

For t = 3, we have

yi3 � yi2 = γ (yi ,2 � yi ,1) + vi3 � vi ,2.

Thus, yi1 is a valid instrument.
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Dynamic Panels
Instrumental variables estimation

For t = 4, we have

yi4 � yi3 = γ (yi3 � yi2) + vi4 � vi3

In this case, yi1 and yi2 are valid instruments.

For period T , the set of instruments becomes (yi1, yi2, ..., yi .T�2).
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Dynamic Panels
Instrumental variables estimation

Letting ∆vi = (vi3 � vi2, ..., viT � vi ,T�1)0, we �nd

E∆vi∆v 0i = σ2vG ,

where G =

0BBBBBBBBB@

2 �1 0 � � � 0 0 0
�1 2 �1 � � � 0 0 0
0 �1 2 � � � 0 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � 2 �1 0
0 0 0 � � � �1 2 �1
0 0 0 � � � 0 �1 2

1CCCCCCCCCA
.
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Dynamic Panels
Instrumental variables estimation

De�ne

Wi =

0BBB@
[yi1] 0

[yi1, yi2]
. . .

0 [yi1, yi2, ..., yi .T�2]

1CCCA
and W = [W 0

1, ...,W
0
N ]
0. Premultiplying the di¤erenced equation by

W , we get
W 0∆y = W 0∆y�1γ+W 0∆v .

Performing GLS on this model, Arellano and Bond (1991, RES)
obtains

γ̂ =
�
(∆y�1)

0W (W 0(IN 
 G )W )�1W 0 (∆y�1)
��1

�
�
(∆y�1)

0W (W 0(IN 
 G )W )�1W 0 (∆y)
�
.
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Dynamic Panels
Instrumental variables estimation

The optimal GMM estimator is

γ̃ =

"
(∆y�1)

0W (
N

∑
i=1
W 0
i (∆vi ) (∆vi )

0W )�1W 0 (∆y�1)

#�1

�
"
(∆y�1)

0W (
N

∑
i=1
W 0
i (∆vi ) (∆vi )

0W )�1W 0 (∆y)

#
.

To make this estimator operational, replace ∆vi with ∆v̂i obtained
from γ̂.
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Dynamic Panels
Instrumental variables estimation

See also Arellano and Bover (1995, JoE), Blundell and Bond (1998,
JoE) for related research.
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Exercises

1. Consider the panel data model

yit = µ+ βxit + uit , (i = 1, ...,N; t = 1, ...,T ) (14)

where xit � iid(0, σ2x ), uit = µi + vit , vit � iid(0, σ2v ), and xit is
independent of vjs for all i , t, j and s.
a. Assuming that N ! ∞ and that T is �xed, calculate the variance ofp
N(β̂FE � β), where β̂FE is the �xed e¤ect estimator of β.

b. Consider the di¤erenced model

∆yit = β∆xit + ∆vit .

Under the same assumptions as in part (a), calculate the variancep
N(β̂OLS � β), where β̂OLS is the OLS estimator of β using the

di¤erenced model.
c. Which estimator is more e¢ cient?
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Exercises

2. Consider the following two-period �xed e¤ects model with a single
regressor, xit

yit = λi + αxit + uit , (i = 1, . . . , n; t = 1, 2), (15)

where
xit = zi + ait and uit = vi + bit (16)

and zi and vi are random variables. As usual, λi is an individual e¤ects
variable correlated with xit . Observed data are fyitg and fxitg. But fzig
and faitg are not separately observed. Random variables faitg and fbitg
bring time series variations to the observed data. For faitg and fbitg,
assume�
nβait
nγbit

�
� iid

�
0,
�

σ2a 0
0 σ2b

��
for every n, i and t.

a. Show that the Within-OLS and �rst-di¤erenced estimators are identical
for this two-period �xed e¤ects model.
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Exercises

(continued)
b. The �rst-di¤erenced estimator is written as

α̂d =
∑n
i=1 ∆xi∆yi

∑n
i=1 (∆xi )

2 = α+
∑n
i=1 ∆ai∆bi

∑n
i=1 (∆ai )

2

where ∆wi = wi2 � wi1. Find the limiting distribution of n
β+γp
n ∑n

i=1 ∆ai∆bi

and the probability limit of n
2β

n ∑n
i=1 (∆ai )

2 when n! ∞. Using these
results, �nd the limiting distribution of n

1
2�β+γ(α̂d � α).

c. When is the estimator α̂d consistent?
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