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What is Heteroskedasticity?

The assumption of homoskedasticity means that E (u2t j all x 0s) = σ2

(σ2 is a constant that does not change over i).

If this is not true, that is if the variance of ut is di¤erent for di¤erent
values of the x�s, then the errors are heteroskedastic.
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What is Heteroskedasticity?

Example
(Cross-section consumption function)
yi : household i�s consumption
xi : household i�s income
Consider the regression equation

yi = β0 + β1xi + ui .

Then, Var(yi j xi ) = Var(ui j xi ). It is highly likely that Var(yi j xi ) is
large when xi is large.
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Why Worry About Heteroskedasticity?

OLS is still unbiased and consistent, even if we do not assume
homoskedasticity.

Example
Consider the model

yt = β0 + β1xt + ut , E (ut ) = 0 and E (u
2
t ) = σ2t .

Assume for simplicity that fxtg is a sequence of constants. Recall that

β̂1 � β1 =
n

∑
t=1
wtut ,

where wt = xt�x̄
∑n
t=1(xt�x̄ )2

. Then, E (β̂1) = β1 since

E (β̂1 � β1) = E (
n

∑
t=1
wtut )

=
n

∑
t=1
wtE (ut ) = 0.
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Why Worry About Heteroskedasticity?

Furthermore, if we assume σ2t < M for all t,

Var(β̂1) = E
h�

β̂1 � β1
�2i

= E

24 n

∑
t=1
wtut

!235
=

n

∑
t=1
w2t
�
Eu2t

�
=

n

∑
t=1
w2t σ2t

=
∑n
t=1(xt � x̄)2σ2t

(∑n
t=1(xt � x̄)2)

2 �
M

∑n
t=1(xt � x̄)2

.

Thus, if ∑n
t=1(xt � x̄)2 ! ∞ as n increases, the estimator is

consistent.
In Choi (Sogang University) 9. Heteroskedasticity 5 / 11



Why Worry About Heteroskedasticity?

The usual formula for standard errors should be di¤erent if we have
heteroskedasticity. Thus, we can not use the usual t or F test for
drawing inferences.
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Robust Standard Errors

Consider the simple linear regression model. Then, Var(β̂1) can be
estimated by

∑n
t=1(xt � x̄)2û2t

(∑n
t=1(xt � x̄)2)

2 .

Adjusted t-ratio is de�ned by

β̂1r
∑n
t=1(xt�x̄ )2 û2t

(∑n
t=1(xt�x̄ )2)

2

.

This has a standard normal distribution in the limit. If this is used,
hestroskedasticity is taken care of.
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Robust Standard Errors

Write

p
n
�

β̂1 � β1
�
=

 
1
n

n

∑
t=1
(xt � x̄)2

!�1
1p
n

n

∑
t=1
(xt � x̄)ut .

The variance of 1p
n ∑n

t=1(xt � x̄)ut is 1n ∑n
t=1(xt � x̄)2σ2t .
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Robust Standard Errors

By the WLLN,

1
n

n

∑
t=1
(xt � x̄)2u2t �

1
n

n

∑
t=1
(xt � x̄)2σ2t

p�! 0.

Since u2t � û2t
p�! 0, 1

n ∑n
t=1(xt � x̄)2σ2t can be estimated by

1
n ∑n

t=1(xt � x̄)2û2t .
Thus, if lim 1

n ∑n
t=1(xt � x̄)2 = M and lim 1

n ∑n
t=1(xt � x̄)2σ2t = L,

β̂1 � β1r
∑n
t=1(xt�x̄ )2 û2t

(∑n
t=1(xt�x̄ )2)

2

=

p
n
�

β̂1 � β1
�r

1
n ∑n

t=1(xt�x̄ )2 û2t
( 1n ∑n

t=1(xt�x̄ )2)
2

d�! N(0,M�2L)q
L
M 2

= N(0, 1)
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Robust Standard Errors

Important to remember that these robust standard errors only have
asymptotic justi�cation. In small samples, the t-statistic formed with
the robust standard error may not have a distribution close a standard
normal distribution, and inferences may not not be correct.
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Generalized least squares (GLS) estimation

Model
yt = β0 + β1x1t + � � �+ βkxkt + ut .

If Var(ut ) = σ2t , consider the transformed model

yt/σt = β0/σt + β1x1t/σt + � � �+ βkxkt/σt + ut/σt .

The error term ut/σt satisfy classical assumptions. Thus, the OLS
estimator from this transformed model is BLUE. This estimator is
called the generalized least squares (GLS) estimator.

In practice, σt is not known.
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