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Consistency

Under the assumptions given earlier, OLS is BLUE.

In other cases it is not always possible to find unbiased estimators.

In those cases, we may settle for estimators that are consistent.

Consistency means that the distribution of the estimator collapses to
the true parameter value as n→ ∞.
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Consistency

Example
Autoregressive model of order 1 (AR(1) model)

yt = αyt−1 + ut , ut ∼ iid(0, σ2), |α| < 1, t = 2, ..., n.

We cannot have E (ut | y1, ..., yn) = 0 because
yt = ut + αut−1 + α2ut−2 + ... Thus, the conditions for the Gauss-Markov
theorem are not satisfied. The OLS estimator of α, α̂ = ∑n

t=2 ytyt−1
∑n
t=2 y

2
t−1
, is

biased. However, we can show that it is consistent.
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Consistency of OLS

Under the assumptions given earlier, the OLS estimator is consistent.

Consistency can be proved for the simple regression case in a manner
similar to the proof of unbiasedness.
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Convergence in probability

Let X be a random variable and {Xn} a sequence of random
varialbes. If for ε > 0

lim
n→∞

P (|Xn − X | > ε) = 0,

Xn is said to converge in probability to X , written

Xn
p→ X .

X is known as the probability limit of Xn, written

X = plimn→∞Xn.
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Convergence in probability

Chebyshev’s inequality For ε > 0,

P [|Xn − X | > ε] ≤ E (Xn − X )2/ε2.

Proof. Consider an indicator function that take value 1 if
|Xn − X | > ε and zero otherwise. Write this as
1{|Xn − X | > ε}. Then,

P [|Xn − X | > ε] = E1{|Xn − X | > ε}.

If |Xn − X | > ε, |Xn−X |
2

ε2
> 1 and

1{|Xn − X | > ε} < |Xn−X |2
ε2

. If

|Xn − X | ≤ ε, 0 = 1{|Xn − X | > ε} ≤ |Xn−X |2
ε2

(≥ 0). Thus,

1{|Xn − X | > ε} ≤ |Xn − X |
2

ε2
with probability 1,

which gives E1{|Xn − X | > ε} ≤ E |Xn−X |2
ε2

.
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Convergence in probability

Example
The weak law of large numbers
Let {Xi , i ≥ 1} be a sequence of iid r.v.s with mean µ and variance σ2.
Then

1
n

n

∑
i=1
Xi

p→ µ as n→ ∞,

because for ε > 0

P [

∣∣∣∣∣1n n

∑
i=1
Xi − µ

∣∣∣∣∣ > ε] ≤ E
[
1
n

n

∑
i=1
(Xi − µ)

]2
/ε2 =

σ2

ε2n
→ 0

as n→ ∞.
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Convergence in probability

Some useful results regarding stochastic convergence are:
1. Xn

p→ X and g (·) is a continuous function

⇒ g (Xn)
p→ g (X ) .

Example
Let

Xn =
{
1 with probability 1

n
0 with probability 1− 1

n
.

Obviously, Xn
p→ 0. Let g (x) = x + 1. Then, g (Xn)

p→ g (0) = 1.
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Convergence in probability

2. Suppose that Xn
p→ X and Yn

p−→ Y . Then

Xn + Yn
p−→ X + Y

XnYn
p−→ XY

Yn
Xn

p−→ Y
X
when X 6= 0 with probability 1.
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Consistency of OLS in simple linear regressions

Consider the simple linear regression model

yt = β0 + β1xt + ut ,

for which we assume that {xt} is a sequence of constants. Recall that

β̂1 − β1 =
n

∑
t=1
wtut ,

where wt = xt−x̄
∑n
t=1(xt−x̄ )2

.
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Consistency of OLS in simple linear regressions

Using Chebyshev’s inequality, we find

P [
∣∣β̂1 − β1

∣∣ > ε] ≤ E (β̂1 − β1)
2/ε2

=
σ2

ε2 ∑n
t=1(xt − x̄)2

.

Thus, if ∑n
t=1(xt − x̄)2 → ∞ as n→ ∞, β̂1

p→ β1 as as n→ ∞. Or if
the variance of β̂1 goes to zero as n→ ∞, the OLS estimator is
consistent.
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Consistency of OLS in simple linear regressions

An alternative way of studying consistency of OLS: Write

β̂1 − β1 =
∑n
t=1 (xt − x̄) ut/n

∑n
t=1(xt − x̄)2/n

and assume ∑n
t=1(xt − x̄)2/n −→ M (> 0). Then,

P [

∣∣∣∣∣1n n

∑
t=1
(xt − x̄) ut

∣∣∣∣∣ > ε] ≤ 1
n2
E (

n

∑
t=1
(xt − x̄) ut )2/ε2

=
σ2 ∑n

t=1(xt − x̄)2
n2ε2

→ 0.

Thus, β̂1 − β1
p−→ 0

M = 0.

A useful fact If an
p−→ a and bn

p−→ b as n→ ∞, anbn
p−→ a

b as n→ ∞.
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Consistency of OLS in simple linear regressions

If {xt} is a sequence of r.v.’s, assume
1. ∑n

t=1(xt − x̄)2/n
p−→ M (> 0)

2. x̄
p−→ L

3. Ex2t < c (∈ R) for all t
4.

E
(
ut |all x ′s

)
= 0 for all t.

and {
Var (ut |all x ′s) = σ2 for all t = 1, 2, · · · , n
Cov (ut , us |all x ′s) = 0 for all s 6= t.

,
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Consistency of OLS in simple linear regressions

Write

β̂1 − β1 =
∑n
t=1 (xt − x̄) ut/n

∑n
t=1(xt − x̄)2/n

.

The denominator converges to M in probability. For the nominator,
we have

P [

∣∣∣∣∣1n n

∑
t=1
xtut

∣∣∣∣∣ > ε] ≤ 1
n2
EE

{
(
n

∑
t=1
xtut )2|all x ′s

}
/ε2

=
σ2 ∑n

t=1 Ex
2
t

n2ε2
<

σ2c
nε2
→ 0

due to Assumptions 3 and 4, and x̄ 1n ∑n
t=1 ut

p−→ 0, which imply that

the nominator converges to 0 in probability. Thus, β̂1 − β1
p−→ 0.
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Consistency of OLS in simple linear regressions

Using this method,we can show consistency of the OLS estimator for
the AR(1) model. Write

α̂− α =
∑n
t=2 yt−1ut

∑n
t=2 y

2
t−1

.

Then, if |α| < 1, we can show that 1n ∑n
t=2 y

2
t−1

p−→ σ2

1−α2
and that

1
n ∑n

t=2 yt−1ut
p−→ 0.

For unbiasedness, we assumed a zero conditional mean
E (ut |all x) = 0. This implies E (ut f (all x)) = 0, where f (·) is any
function.
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Consistency of OLS in simple linear regressions

Consistency can hold even when there are serial correlations in the
errors. For example, consider the simple linear regression model

yt = β0 + β1xt + ut ,

where ut = et + θet−1. Then,

β̂1 − β1 =
∑n
t=1 (xt − x̄) et/n+ θ ∑n

t=1 (xt − x̄) et−1/n
∑n
t=1(xt − x̄)2/n

.
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Consistency of OLS in simple linear regressions

Thus, if
1. ∑n

t=1(xt − x̄)2/n
p−→ M (> 0)

2. x̄
p−→ L (∈ R)

3. Ex2t < c (∈ R) for all t
4.

E
(
et |all x ′s

)
= 0 for all t.

and {
Var (et |all x ′s) = σ2 for all t = 1, 2, · · · , n
Cov (et , es |all x ′s) = 0 for all s 6= t.

,

β̂1 is consistent.
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Large sample inference

Recall that under the assumption of normality for the errors, the
sampling distributions are normal, so we could derive t and F
distributions for testing.

This assumption of normal errors implied that the distribution of y ,
given the x’s, was normal as well.

It is easy to come up with examples for which this exact normality
assumption will fail. Any clearly skewed variable, like wages, arrests,
savings, etc. can’t be normal, since a normal distribution is
symmetric.
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Large sample inference

Assume as before

1 {xit} is a sequence of random variables that satisfies some other
conditions.

2 xit is not linearly related to xjt for any i and j( 6= i). (No redundant
information in regressors)

3 Zero conditional mean of the disturbance

E
(
ut |all x ′s

)
= 0 for all t.

Whatever values x11, x12, ...xk (n−1), xkn take, the mean of ut is zero.
This assumption implies

E (ut ) = 0 and Cov (ut , xjt ) = 0 for any t and j .
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Large sample inference

4. Spherical disturbances{
Var (ut |all x ′s) = σ2 for all t = 1, 2, · · · , n
Cov (ut , us |all x ′s) = 0 for all s 6= t.

The assumption of common variance for ut is called homoskedasticity.

Under these assumptions, we have(
β̂j − βj

)
/
√
Var(β̂j ) ' N (0, 1)) . (1)

where Var(β̂j ) =
σ2

∑n
t=1(xjt−x̄j )2(1−R 2j )

. That is, β̂ is approximately

normal with mean β and variance σ2

∑n
t=1(xjt−x̄j )2(1−R 2j )

.

Here “'” implies “convergence in distribution.”
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Large sample inference

Let Fn(x) and F (x) be distribution functions of Xn and X ,
respectively. If Fn (x)→ F (x) at every continuity point x of F , Fn is
said to converge weakly to F , written Fn ⇒ F . In this case, {Xn} is
said to converge in distribution to X where X is a random variable

with distribution function F , written Xn
d→ X .

Example

Let {Xi , i ≥ 1} be a sequence of i.i.d. r.v.s with E (X1) = µ and
Var (X1) = σ2 6= 0. Then

∑n
i=1 (Xi − µ)

σ
√
n

d→ N (0, 1) as n→ ∞.

Relation (1) can be written as

β̂j − βj√
Var(β̂j )

d→ N (0, 1) as n→ ∞.
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Large sample inference

1 Xn
d→ X and g (·) is continuous

⇒ g (Xn)
d→ g (X ) .

(This is called the continuous mapping theorem)

2 Suppose that Yn
d→ Y and Xn

p→ c (a constant). Then

Xn + Yn
d→ c + Y

XnYn
d→ cY

Yn
Xn

d→ Y
c
when c 6= 0.

Example

If Xn
d→ N (0, 1) , X 2n

d→ χ2 (1) .
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Large sample inference

The t-ratio for the null hypothesis

H0 : βj = β0j ,

is defined as
β̂j − β0j√
V̂ar(β̂j )

,

where V̂ar(β̂j ) =
s2

∑n
t=1(xjt−x̄j )2(1−R 2j )

. When n→ ∞,

β̂j − β0j√
V̂ar(β̂j )

d→ N(0, 1).
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Large sample inference

We deduce from the distribution of the t-test

P
(

β̂j − cα/2SE (β̂j ) ≤ βj ≤ β̂j + cα/2SE (β̂j )
)
' 1− α

The approximate 100(1-α)% confidence interval for βj is[
β̂j − cα/2SE (β̂j ), β̂j + cα/2SE (β̂j )

]
,

where cα/2 is taken from N(0, 1).
Consider the null hypothesis

H0 : β1 = ... = βk = 0.

The F−test for this null is defined as

F =
R2/k

(1− R2)/(n− k − 1) .

As n→ ∞,
kF

d→ χ2(k).
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Large sample inference

Consider the null hypothesis

H0 : βk−q+1 = ... = βk = 0.

Estimate the restricted linear regression model

yt = β0 + β1x1t + ...+ βk−qxk−q,t + ut

and let the sum of squared residuals RSSr . The sum of sqaured
residuals from regressing y on x1, ..., xk is denoted as RSSur
(unrestricted sum of squared residuals).The F−test for this null is
defined as

F =
(RSSr − RSSur ) /q
RSSur/(n− k − 1)

.

As n→ ∞,
qF

d→ χ2(q).
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