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Least squares methods for estimating coeffi cients

Reading: Chapter 3 of Greene

Methods for estimating β
Least squares estimation
Maximum likelihood estimation
Method of moments estimation
Least absolute deviation estimation
...
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Least squares estimation

The objective function for the least squares estimation is

S(β1, ..., βK ) =
n

∑
i=1
(yi − β1xi1 − · · · − βK xiK )

2 .

We need to minimize this function.

The first—order conditions for the minimization is

∂S (β1)
∂β1

= −2
n

∑
i=1
xi1 (yi − β1xi1 − · · · − βK xiK ) = 0

...
∂S (βK )

∂βK
= −2

n

∑
i=1
xiK (yi − β1xi1 − · · · − βK xiK ) = 0.
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Least squares estimation

These equations can be written as

n

∑
i=1
xi1yi = β1

n

∑
i=1
xi1xi1 + · · ·+ βK

n

∑
i=1
xi1xiK

...
n

∑
i=1
xiK yi = β1

n

∑
i=1
xikxi1 + · · ·+ βK

n

∑
i=1
xikxiK

or  x′1y
...
x′K y

 =
 x′1x1 · · · x′1xK

...
...

...
x′K x1 · · · x′K xK


 β1

...
βk


or

X ′y = (X ′X )β
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Least squares estimation

The solution of these equations (b in vector notation) is

b =
(
X ′X

)−1 X ′y .
This is the least squares estimator of β, or the ordinary least squres
estimator (OLS). If rank (X ) = K , rank (X ′X ) = K . Thus, the
inverse of X ′X exists.
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Least squares estimation

Residual vector

e = y − Xb
= y − X (X ′X )−1X ′y
= (I − X

(
X ′X

)−1 X ′)y
= (I − P)y , (1)

where P = X (X ′X )−1 X ′. The matrix P is called the projection
matrix. We also let I − P = M. Then, we may write (1) as

y = Xb+ e = Py +My .

We often write Py = ŷ . This is the part of y that is explained by X .
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Least squares estimation

Properties of the matrices P and M are:

1 P ′ = P, P2 = P (idempotent matrix)
2 M ′ = M, M2 = M
3 PX = X , MX = 0
4 PM = 0
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Least squares estimation

Using (1) and (iii), we have

X ′e = X ′My = 0.

If the first column of X is x1 = (1, · · · , 1)′ , this relation implies

x′1e =
n

∑
i=1
ei = 0.

In addition, (iv) gives

y ′y = y ′P ′Py + y ′M ′My = ŷ ′ŷ + e ′e
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Partitioned regression

Consider

y = X β+ ε = X1β1 + X2β2 + ε. X =
[
X1 X2

]
, β =

[
β1
β2

]

The normal equations for b1 and b2 are(
X ′1X1 X ′1X2
X ′2X1 X ′2X2

)(
b1
b2

)
=

(
X ′1y
X ′2y

)
.
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Partitioned regression

The first part of these equations are(
X ′1X1

)
b1 +

(
X ′1X2

)
b2 = X ′1y

which gives

b1 =
(
X ′1X1

)−1 X ′1y − (X ′1X1)−1 X ′1X2b2
=

(
X ′1X1

)−1 X ′1 (y − X2b2) .
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Partitioned regression

Plug this into the second part of the normal equations. Then, we have

X ′2X1b1 + X
′
2X2b2

= X ′2X1
(
X ′1X1

)−1 X ′1y − X ′2X1 (X ′1X1)−1 X ′1X2b2 + X ′2X2b2
= X ′2X1

(
X ′1X1

)−1 X ′1y + X ′2 (I − PX1)X2b2
= X ′2y .

Thus
b2 =

(
X ′2 (I − PX1)X2

)−1 X ′2 (I − PX1) y .
In the same manner,

b1 =
(
X ′1 (I − PX2)X1

)−1 X ′1 (I − PX2) y .
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Partitioned regression

Suppose that

X1 =

 1
...
1

 and X2 = Z(n×K2).

Then
b2 =

(
Z ′ (I − P1)Z

)−1 Z ′ (I − P1) y .
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Partitioned regression

But
(I − P1)Z = Z − 1

(
1′1
)−1 1′Z

and
1′1 =n

1′Z =
(
1 · · · 1

) z11 · · · z1K2
...
zn1 · · · znK2


=

(
∑n
i=1 zi1 · · · ∑n

i=1 ziK2
)
.
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Partitioned regression

Thus,

(I − P1)Z = Z −

 1
...
1

( z̄1 · · · z̄K2
)

=


z11 − z̄1 · · · z1K2 − z̄K2
z21 − z̄1 · · · z2K2 − z̄K2

...
zn1 − z̄1 · · · znK2 − z̄K2


In the same way,

(I − P1) y =

 y1 − ȳ
...

yn − ȳ

 .
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Partitioned regression and partial regression

These show that b2 is equivalent to the OLS estimator of β in the
demeaned regression equation

yi − ȳ = β′ (zi − z̄) + εi .(
z̄ = (z̄1, · · · , z̄K2)

′)
Whether we demean the data and run regression or put a constant
term in the model and run regression, we get the same results.
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Goodness—of—fit measures
Coeffi cient of determination

Write
y = Xb+ e = ŷ + e.

Let

M0 = I − 1
(
1′1
)−1 1′ with 1 =

 1
...
1

 .
M0 transforms observations into deviations from sample means.
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Goodness—of—fit measures
Coeffi cient of determination

Then

M0y = M0Xb+M0e

= M0Xb+ e

or
y − 1ȳ = ŷ − 1ȳ + e.

The total sum of variation (TSS) of yi is

y ′M0y = b′X ′M0Xb + e ′e.
q q q

∑n
i=1 (yi − ȳ)

2 ∑n
i=1 (ŷi − ȳ)

2 ∑n
i=1 e

2
i
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Goodness—of—fit measures
Coeffi cient of determination

Note that

b′X ′M0e = b′X ′M0Mε

= b′X ′
(
I − 1

(
1′1
)−1 1′)Mε

= b′X ′Mε− b′X ′1
(
1′1
)−1 1′Mε

= 0

because X ′M = 0 and 1′M = 0. The term b′X ′M0b is called the
explained sum of squares (ESS), and e ′e the residual sum of squares
(RSS).
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Goodness—of—fit measures
Coeffi cient of determination

How well the regression line fits the data can be explained by

R2 =
ESS
TSS

=
b′XM0Xb
y ′M0y

= 1− e ′e
y ′M0y

.

We call R2 the coeffi cient of determination.

In Choi (Sogang University) Chapter 3: Least Squares Methods 19 / 40



Goodness—of—fit measures
Coeffi cient of determination

(i)
0 ≤ R2 ≤ 1

0 : no fit
1 : perfect fit
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Goodness—of—fit measures
Coeffi cient of determination

(ii)
R2X ,Z : R2 for the regression of y on X and an additional variable Z .
R2X : R2 for the regression of y on X .

Then
R2X ,Z = R

2
X +

(
1− R2X

)
r ∗2yz (2)

where

r ∗2yz =
(z ′∗y∗)

2

(z ′∗z∗) (y ′∗y∗)
, z∗ = (I − PX ) z , y∗ = (I − PX ) y .

The coeffi cient of determination R2 increases as the number of regressors
increases whatever quality the additional regressors have.
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Goodness—of—fit measures
Coeffi cient of determination

Theil’s R̄2 (adjusted R2)

R̄2 = 1− e ′e/ (n−K )
y ′M0y/ (n− 1) = 1−

n− 1
n−K

(
1− R2

)
R̄2 will fall (rise) when the variable x is deleted from the regression if the
t—ratio associated with this variable is greater (less) than 1.
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Goodness—of—fit measures
Information criteria

(i) AIC (Akaike Information Criterion)

AIC (K ) = ln e
′e
n +

2K
n

Select a set of regressors that minimize AIC .

AIC was designed to be an approximately unbiased estimator of the
expected Kullback-Leibler information of a fitted model.

If the true model is finite dimensional, AIC does not provide
consistent model order selections.

AIC tends to overfit.
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Goodness—of—fit measures
Information criteria

(ii) AICc (Corrected AIC )

See Hurvich and Tsai (1989), “Regression and time series model
selection in small samples,”Biometrika, 76, 297—307.

AICc is a bias-corrected version of AIC

AICc = AIC +
2 (K + 1) (K + 2)

T −K − 2

AICc is useful particularly in finite samples.
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Goodness—of—fit measures
Information criteria

(iii) BIC (Bayesian information criterion)

BIC (K ) = ln e
′e
n +

K ln n
n

BIC also tends to overfit as AIC does, but it appears that BIC is
uniformly better than AIC at selecting the correct model (see Hurvich
and Tsai (1990), “The impact of model selection on inference in
linear regression,”American Statistician, vol. 44, for some simulation
results regarding linear regression).
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An alternative way of deriving OLS

Write the objective function for the least squares estimation as

S(β) = (y − X β)′(y − X β)

and let the OLS be b = argminβ S(β). The residual vector is
û = y − Xb.
Write

S(β) = (y − Xb+ Xb− X β)′(y − Xb+ Xb− X β)

= (û + X (b− β))′(û + X (b− β))

= û′û + 2(b− β)′X ′û + (b− β)′X ′X (b− β).
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An alternative way of deriving OLS

Lemma Let f (x) = a+ b′x + x ′Hx , where b is an n× 1 vector and
H is an n× n symmetric matrix. Then, f (·) is minimized
uniquely at x = 0 if and only if b = 0 and H > 0.

Proof Assume b = 0 and H > 0. Then, f (0) = 0 and f (x) > a for
all x 6= 0. Thus, f (·) is minimized at x = 0. This proves the
suffi ciency part of the lemma.
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An alternative way of deriving OLS

Proof (continued) Assume H ≤ 0 and b is an arbitrary vector. Choose xo
( 6= 0) such that b′xo ≤ 0. Then,
f (xo ) = a+ b′xo + xo ′Hxo ≤ a. Thus, f (·) is not
minimized uniquely at x = 0. Assume H > 0 but b 6= 0. Put
y = − 12H−1b. Then,

f (y) = a− 1
2
b′H−1b+

1
4
b′H−1b

= a− 1
4
b′H−1b ≤ a,

since H−1 > 0. Thus, f (·) is not minimized uniquely at
x = 0. This proves the necessity part of the lemma.
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An alternative way of deriving OLS

This lemma shows that S(β) is uniquely minimized at b if and only of
X ′û = 0 and X ′X > 0. Since X ′û = X ′(y − Xb) = 0, b = (X ′X )−1X ′y .
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Exercises

1. Instead of estimating the coeffi cients β1 and β2 in model
1

y = X1β1 + X2β2 + ε, (3)

it is decided to use OLS on the following equation

y = X ∗1 β1 + X2β2 + ε∗, (4)

where X ∗1 is the residual vector from the regression of X1 on X2.
a. Show that the OLS estimator of β2 in model (4) is the same as the
OLS coeffi cient estimator of y on X2.
b. Prove that the OLS estimators of β1 in models (3) and (4) are identical.

1Assume β1 is a scalar.
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Exercises

2. In the linear regression model

y = X1β1 + X2β2 + ε,

under what condition b1 = (X ′1X1)
−1X ′1y?

3. Show that the OLS estimators of β1 in the following regression
equations are identical.

yt = Xtβ1 + tβ2 + et ;

y ∗t = X ∗t β1 + ut

where y ∗t and X
∗
t are detrended yt and Xt , respectively, obtained by

regressing yt and Xt on t and setting y ∗t and X
∗
t equal to the respective

residuals.

In Choi (Sogang University) Chapter 3: Least Squares Methods 31 / 40



Exercises

4. Show that (ŷ − 1ȳ)′ e = 0.
5. Prove relation (2).
6. Prove the following statement.

R̄2 will fall (rise) when the variable x is deleted from the
regression if the t—ratio associated with this variable is greater
(less) than 1.
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Exercises

7. In the linear regression model

y = X β+ ε,

there is a need for changing the unit of measurement for the dependent
variable y . So y ∗ = cy (c is a constant) is now used as a dependent
variable.
a. Does this practice change R2?
b. What happens to R2 if the unit of measurement is changed only for the
regressor?
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Exercises

8. Consider the linear regression model

yi = α+ β′Xi + εi , εi ∼ iid
(
µ, σ2

)
, µ 6= 0

a. Is the OLS estimator of β affected by the nonzero mean of εi ?
b. Can the least squares estimator of α estimate it accurately?
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Exercises

9. Discuss the validity of the following statements.
a. Sum of residuals is always zero.
b. If a regression produces R2 greater than 0.5, the regression is a reliable
one.
c. In a regression model

yi = αxi + εi ,

switching the independent and dependent variables and running a least
squares provide a valid estimator of 1α .
d. R̄2 tends to favor larger models.
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Exercises

10. Data on wages from a group of women and a group of men are
available. Denote them as {wi}NWi=1 and {mi}

NM
i=1, respectively. Note that

NW and NM are the numbers of samples. In order to study gender
difference in wage, a statistician considers using the difference in sample
means, i.e., w̄ − m̄ with w̄ = 1

NW ∑NW
i=1 wi and m̄ =

1
NM ∑NM

i=1mi . Another
statistician intends to use the regression model

y = β0 + β1D + ε,

where y = [w1, ...,wNW ,m1, ...,mNM ]
′ and D = [1, ..., 1, 0, ...0], where the

number of 1’s in D is equal to NW . D is a collection of dummy variables.
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Exercises

a. Show that the OLS estimator of β1 is equal to w̄ − m̄.
b. Assume that εi ∼ iid(0, σ2) for all i . Is it equivalent to assuming
common variance for wi and mi ?
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Exercises

c. If wi and mi have the common variance σ2, the usual t-ratio using
w̄ − m̄ is defined by

w̄ − m̄√
σ̂2

NW
+ σ̂2

NM

,

where σ̂2 = 1
NW+NM−2

(
∑NW
i=1(wi − w̄)2 +∑NM

i=1(mi − m̄)2
)
. Is this

equivalent to the t-ratio for the null hypothesis H0 : β1 = 0 that uses the
regression model?
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Exercises

11. a. Using the partial regression result, show that

PX = X1(X
′
1MX2X1)

−1X ′1MX2 + X2(X
′
2MX1X2)

−1X ′2MX1 ,

where X = [X1,X2].
b. Show that matrix X1(X ′1MX2X1)

−1X ′1MX2 is idempotent.
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Exercises

12. Show that Wald test statistics for β1 in the following two regression
equations

y = X1β1 + X2β2 + e;

y ∗ = X ∗1 β1 + u

are identical. Here y ∗ = (I − PX2)y and X ∗1 = (I − PX2)X1. The divisor
for the computation of the estimator of the error variance is set to be the
sample size.
(Hint: y ′PX y = y ′PX2y + y

∗′PX ∗1 y
∗, where X = [X1 X2].)
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