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Abstract

This paper proposes a new test for the null hypothesis of panel unit roots

for micropanels with short time dimensions (T ) and large cross sections (N).

There are several distinctive features of this test. First, the test is based on a

panel AR(1) model allowing for cross-sectional dependency, which is introduced

by a factor structure of the initial condition. Second, the test employs the panel

AR(1) model with AR(1) coe¢ cients that are heterogeneous for �nite N . Third,

the test can be used both for the alternative hypothesis of stationarity and

for that of explosive roots. Fourth, the test does not use the AR(1) coe¢ cient

estimator. The e¤ectiveness of the test rests on the fact that the initial condition

has permanent e¤ects on the trajectory of a time series in the presence of a unit

root. To measure the e¤ects of the initial condition, this paper employs cross-

sectional regressions using the �rst time series observations as a regressor and the

last as a dependent variable. If there is a unit root in every individual time series,

the coe¢ cient of the regressor is equal to one. The t-ratios for the coe¢ cient
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are this paper�s test statistics and have a standard normal distribution in the

limit. The t-ratios are based on the ordinary least squares estimator and the

instrumental variables estimator that uses reshu ed regressors as instruments.

The test proposed in this paper makes it possible to test for a unit root even at

T = 2 as long as N is large. Simulation results show that test statistics have

reasonable empirical size and power. The test is applied to college graduates�

monthly real wage in South Korea. The number of time series observations for

this data is only 2. The null hypothesis of a unit root is rejected against the

alternative of stationarity.

Keywords: Unit root, panel data, factor model, internal instrument, earnings

dynamics

1 Introduction

In recent years, there has been much interest in testing for a unit root using panel

data. Nowadays, it is quite common in empirical applications to use panel data rather

than individual time series for the purpose of testing for a unit root. Many panel

unit root tests are now programmed in commercial software so they are now widely

available. Panel unit root tests that have often been used in applications (e.g., Choi,

2001; Im, Pesaran and Shin, 2003; Levin, Lin and Chu, 2002; Maddala and Wu, 1999;

etc.) assume a large time dimension (T ) and a large cross section (N), making them

more appropriate for applications to macropanels than to micropanels. Extensions

of these tests to cross-sectionally correlated panels have also been made (e.g., Bai

and Ng, 2004; Breitung and Das, 2005; Choi and Chue, 2007; Demetrescu, Hassler

and Tarcolea, 2006; Moon and Perron, 2004; Phillips and Sul, 2003; Pesaran, 2007;

Sheng and Yang, 2013; etc.). More discussions and references related to panel unit

root tests can be found in Choi (2006, 2015) and Breitung and Pesaran (2008).

There are several panel unit root tests designed for short T and large N . Breitung

and Meyer (1994), De Blander and Dhaene (2012), De Wachter, Harris and Tzavalis

(2007), Harris and Tzavalis (1999, 2004), Karavias and Tzavalis (2014) and Kru-

iniger (2008, 2009) belong to this category. These tests assume homogeneous AR(1)



coe¢ cients and cross-sectional independence of observations, and are more suitable

for micropanels. In addition, there are tests designed for cross-sectionally dependent

panels with short T: Robertson, Sara�dis and Westerlund (2014) employ the panel

AR(1) model with errors having a factor structure and use GMM for inference. Their

test requires a trend variable in the model and cannot be used for models with only

�xed e¤ects. Karavias and Tzavalis (2014) assume a spatial dependence structure

for errors to deal with cross-sectional dependency of micro units. But the variance-

covariance matrix of the limiting distribution of their estimator cannot be estimated

consistently, which requires using bootstrapping.

This paper proposes a panel unit root test for micropanels with short T and large

N . There are several distinctive features of this test. First, the test is based on a

panel AR(1) model allowing for cross-sectional dependency, which is introduced by a

factor structure of the initial condition. Our panel data model is new in the literature

and should be useful for some applications.

Second, our test uses a panel AR(1) model with AR(1) coe¢ cients that are het-

erogeneous for �nite N . All the existing tests based on short T assume homogeneous

AR(1) coe¢ cients. Although those tests must have nonnegligible power even when

the AR(1) coe¢ cients are heterogeneous, assuming homogeneous AR(1) coe¢ cients

seems to be a conceptual drawback.

Third, the test of this paper can be used both for the alternative hypothesis of

stationarity and for that of explosive roots. The alternative hypothesis of stationarity

is the main concern of many studies. But that of explosive roots is also potentially

important because it is related to testing for the presence of asset bubble as discussed

in Phillips, Wu and Yu (2011) and Homm and Breitung (2012)

Fourth, this paper�s test does not use the AR(1) coe¢ cient estimator.1 Instead,

1There are a few papers in the time series literature that do not use the AR coe¢ cient estimators

for unit root testing (see, for example, Breitung, 2002; Breitung and Gouriéroux, 1997; Burridge and

Guerre, 1996; Cavaliere, 2001; Hasan and Koenker, 1997; Hallin, Van den Akker and Werker, 2011;

Nielsen, 2009). See Chapter 4 of Choi (2015) for detailed discussions on these papers. But the ideas

of these papers have not yet been extended to panel data. Moreover, none of these papers use the

idea of this paper.
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it rests on the fact that the initial condition has permanent e¤ects on the trajectory

of a time series in the presence of a unit root. To measure the e¤ects of the initial

condition, this paper employs cross-sectional regressions using the �rst time series

observations as a regressor and the last as a dependent variable. If there is a unit

root in every individual time series, the coe¢ cient of the regressor is equal to 1. The

t-ratios for the coe¢ cient are this paper�s test statistics and have a standard nor-

mal distribution in the limit. The t-ratios are based on the OLS estimator and the

instrumental-variables (IV) estimator that uses reshu ed regressors as instruments.

We will call the IV estimator the �internal IV estimator�since the instruments orig-

inate from the given sample. If the AR(1) coe¢ cients are less than 1 in absolute

value or greater than 1, the t-ratios diverge to minus or plus in�nity in probability,

making the test consistent. The regressions we will use make it possible to test for a

unit root even when T is very small. In fact, this paper�s test can be implemented

as long as T � 2. By contrast, all the extant panel unit root tests require at least

T � 3 in the case of the panel AR(1) model with individual level e¤ects, and T � 4

in the case of the panel AR(1) model with individual level and trend e¤ects. Panel

unit root tests for very small T are useful now and in the future as well: New kinds

of panel data are constantly being collected throughout the world and these will not

have large T at least for some years. This paper�s test can be applied to those very

short panel data sets as long as N is large enough.

It will be shown that this paper�s particular instruments become valid due to the

assumption on the initial variable. Thus, the assumption is crucial for the consistency

of the test as well as for the cross-sectional dependency of the panel data model.

Whether the assumption is appropriate or not is an empirical matter that should be

examined for each panel data set. In addition, as in other IV regressions, choosing the

number of instruments is an important issue for the internal IV regression. Because

the number of available instruments is greater than the sample size for the internal

IV regression, the issue is quite complex and existing methods (e.g., Andrews, 1999;

and Donald and Newey,2001) cannot be used. This paper does not deal with this

issue, leaving it to future work.
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As an example, this paper�s test is applied to the monthly real wage of college

graduates in South Korea hired in 2006 for the �rst time. The number of time series

observations for this data is only 2, whereas that of cross-sectional observations is

large. The test rejects the null hypothesis of a unit root at conventional signi�cance

levels, rendering support to the similar evidence obtained by Guvenen (2009) and

Okubo (2015), who use US and Japanese data, respectively.

This paper is planned as follows. Section 2 introduces the model, basic assump-

tions and hypotheses. Section 3 introduces this paper�s OLS and internal IV re-

gressions and studies asymptotic properties of the test statistics stemming from the

OLS and IV regressions. Section 4 reports simulation results. Section 5 contains an

empirical application of our test. Section 6 provides summary and further remarks.

Appendix I contains technical assumptions and Appendix II proofs.

A few words on notation: (i) All the limits are taken as N !1: (ii) The sample

mean of fai : i = 1; :::; Ng is denoted as �a: (iii) De�nitional relations are denoted by

:= :

2 The model, basic assumptions and hypotheses

Consider the unobserved components models for the panel data fyitg

yit = �i + xit; (i = 1; : : : ; N ; t = 1; : : : ; T ); (1)

and

yit = �i + �it+ xit; (i = 1; : : : ; N ; t = 1; : : : ; T ); (2)

where fxitg follows the AR(1) model given by2

xit = �ixi;t�1 + uit:

As usual, i and t are indices for individuals and time, respectively, and f�ig and f�ig

denote the unobserved individual level and trend e¤ects, respectively. The individual

2 Instead, one may wish to assume xit = �ixi;t�1 + uit + �
0
ift (t = 2; :::; T ): If f1 is independent

of fftgt=2;:::;T ; all the theory of this paper works with changes in notation.
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trend e¤ects, f�ig, indicate how fast fyitg grows. In these model speci�cations, fxitg

is not observed and brings dynamics to the evolvement of fyitg. Models (1) and (2)

have often been used for unit root testing. See, for example, Schmidt and Phillips

(1992) and Elliott, Rothenberg and Stock (1996) for earlier references.

Assumption 1 lays out the basic characteristics of the individual e¤ects f�ig and

f�ig and the error terms fuitg.

Assumption 1 (i) �i = �+mi, mi � i: i:d:(0; �2m) and �2m > 0;

(ii) �i = � + bi, bi � i: i:d:(0; �2b) and �2b > 0;

(iii) fuitg are independent with E(uit) = 0, E(u2it) = �2ui > 0 for every i and t;

(iv) fmig; fbig and fuitg are independent.

Assumption 1 is of standard nature. Part (iii) implies heteroskedasticity of fuitg,

which will be dealt with as in White (1980).

Additionally, we assume a factor structure for the initial variables fxi1g as follows.

Assumption 2 (i) For every i, xi1 = �0if1, where �i and f1 are the vectors of

unobserved factor loadings and factors, respectively, and f�ig is a sequence of

constant vectors.

(ii) E(f1) = 0 and E(f1f 01) = �f > 0.

(iii) f1 is independent of fmig; fbig and fuitg.

According to Assumption 2 (i), the initial variable yi1 is a¤ected by the individual

e¤ects and the random variable �0if1, which di¤ers across individuals. In Assumption

2 (i), f�ig is a sequence of constant vectors. Because assuming a random sequence for

f�ig entails no analytical di¢ culties and because it brings simplicity, we will keep that

assumption. Assumption 2 (i) also introduces nonzero cross-sectional correlations of

fyitg. The exact nature of this depends on the locations of f�ig and will be discussed

in the next section. Parts (ii) and (iii) of Assumption 2 are of standard nature.

Because the AR(1) coe¢ cients, error terms and initial conditions are heterogeneous

across individuals, so are the dynamics of fyitg even though fxi1g depends on f1

6



across individuals under Assumption 2. To put it di¤erently, fyitg evolves following

a di¤erent path for each individual under Assumption 2.

We now use an example to motivate Model (2). Suppose yi1 is the initial wage of

individual i, a new job entrant. The initial wage is usually a function of individual i�s

characteristics such as educational level, type of industry she works for, intelligence

quotient (IQ), emotional quotient (EQ), unobserved ability in workplaces that are

represented by �i. In addition, the wage must be a¤ected by economy-wide variables

in that particular year. These variables are, for example, the level and growth rate

of GDP in that year, the size of new job seeker pool, the level of per capita capital

stock, the degree of technological progress and the state of the world economy. These

variables are represented by f1. Since each individual responds to these economy-

wide variables di¤erently, the impact of the economy-wide variables can be written

as �0if1, where �i denotes individual i�s response to the economy-wide variables. As

the new job entrant accumulates her work experience, her wage tends to grow and

the rate of growth depends once again on her individual characteristics represented

by �i. In particular, if log-wages are used, �i is the growth rate of individual i�s

wage. In light of these discussions, modelling individual wages as Model (2) seems

reasonable. Model (1) is more specialized than Model (2) and is suitable for panel

data without trends.

The null hypothesis we consider is

H0 : �i = 1 for all i; (3)

and the alternative hypothesis is

HA : �i = �+
�i

N1=2+"
; (4)

where j�j < 1 or � > 1, " > 0 and f�ig is a sequence of �nite constants. Under the null

hypothesis, every individual has a unit root. Under the alternative hypothesis, every

individual has the AR coe¢ cient less than 1 in absolute value or greater than 1 for

large N . In �nite samples, the AR(1) coe¢ cients are heterogenous. Implications of

the null and alternative hypotheses on the properties of fyitg will further be discussed
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in the next section. The alternative hypothesis (4) does not represent the usual local

alternatives because �i converges to � faster than in the usual local alternatives. But

it serves the purpose of this paper well.

3 Test statistics and asymptotic properties

This section introduces tests statistics for the null and alternative hypotheses (3) and

(4), and reports their asymptotic properties.

Model (1) can be written as

yit = �i + �
t�1
i xi1 + wit; (i = 1; : : : ; N ; t = 2; : : : ; T ); (5)

where wit :=
Pt�2
j=0 �

j
iui;T�j . Since yi1 = �i + xi1, individual i�s last data under the

null hypothesis (3) can be represented as

yiT = �i + xi1 + siT (6)

= yi1 + siT ;

where siT :=
PT
j=2 uij . The initial variable yi1 and the shocks fuitgt=2;:::;T have per-

manent e¤ects on yiT under the null hypothesis. Moreover, Cov(yiT ; yjT ) = �0i�f�j ,

implying cross-sectional covariances of fyiT g that do not change with T . Since

Var(yiT ) = �
2
m + �

0
i�f�i + (T � 1)�2ui , the variance of yit grows with T .

Now consider the alternative hypothesis (4) with j�j < 1: Relation (5) gives

yiT = �i + �
T�1
i xi1 + wiT (7)

= �i(1� �T�1i ) + �T�1i yi1 + wiT ;

where wiT :=
PT�2
j=0 �

j
iui;T�j . In contrast to the behavior of fyiT g under the null

hypothesis, e¤ects of the initial variable, yi1, and the shocks, fuitgt=2;:::;T , on yiT are

weakened as yiT progresses into the future. Likewise, cross-sectional covariances di-

minish for large N as T grows since Cov(yiT ; yjT ) = �
T�1
i �T�1j �0i�f�j . The variance

of yiT is represented by �2m + �
2(T�1)
i �0i�f�i +

PT�2
j=0 �

2j�2uj , which does not grow in

proportion to T and is smaller than that under the null hypothesis for large N .
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Combining data-generating processes (6) and (7), the regression model that can

be used to test the null hypothesis (3) is written as

yiT = �� + �1yi1 + viT ; (i = 1; : : : ; N); (8)

where fviT g denotes the regression errors. The null hypothesis (3) is equivalent to

H0 : �1 = 1.

Unlike the conventional dynamic panel data models, Model (8) uses only the

cross-sectional variations of the data at periods 1 and T to estimate the coe¢ cients

�� and �1. Let ~�� and ~�1 be the OLS estimators of �� and �1; respectively. The

heteroskedasticity-robust t-ratio for the null hypothesis (3) using ~�1 is de�ned as

t~�1
=

~�1 � 1r�PN
i=1 (yi1 � �y1)

2
��2PN

i=1 (yi1 � �y1)
2 ~v2iT

;

where f~viT g denotes the regression residuals using the OLS estimators. Properties of

the OLS estimator and the t-ratio are reported in the following theorem.

Theorem 1 Assume that Assumptions 1�5 hold.

(i) Under the null hypothesis (3),

(a) ~�� = Op
�

1p
N

�
and ~�1 = 1 +Op

�
1p
N

�
;

(b) t~�1
d�! N(0; 1)

(ii) Under the alternative hypothesis (4),

(a) ~�1
p�! �2m+�

T�1(f 01M�f1�f 01q�q0�f1)
�2m+f

0
1M�f1�f 01q�q0�f1

; where M� and q� are de�ned in As-

sumption 3;

(b) t~�1
p�! �1 if j�j < 1 and t~�1

p�!1 if � > 1.

Under the null hypothesis, the regressor is uncorrelated with the error term and

the OLS-based t-ratio has a standard normal distribution in the limit. However, under

the alternative hypothesis, the regressor is correlated with the error term since mi is

present in both yi1 and viT . Nonetheless, the OLS-based t-ratio is consistent because

9



~�1 converges to a random variable that is less (greater) than 1 almost surely if j�j < 1

(� > 1):

But because

�2m + �
T�1 (f 01M�f1 � f 01q�q0�f1)

�2m + f
0
1M�f1 � f 01q�q0�f1

= �T�1 +
�2m(1� �T�1)

�2m + f
0
1M�f1 � f 01q�q0�f1

;

the OLS estimator ~�1 has a positive asymptotic bias that has negative impact on the

�nite sample power of the test. The asymptotic bias is caused by the regressor-error

dependence under the alternative hypothesis. The farther away the value of � is

from 1, the large the bias becomes. Moreover, the bias is an increasing (decreasing)

function of �2m when j�j < 1 (� > 1): Thus, the �nite-sample power of the OLS-based

t-test decreases as �2m increases at �xed � as one of the referees indicated. In spite

of the asymptotic bias, the OLS-based t-ratio works well in �nite samples as shown

in Section 4.

In addition to the OLS estimator, we consider an IV estimator using reshu es

of the regressor as instruments. We call the IV estimator the �internal IV estima-

tor� because the instruments originate from given sample. Under Assumption 1,

Cov(viT ; yj1) = 0 for every i (6= j). Moreover, if Cov(yi1; yj1) = �0i�f�j 6= 0 for

enough number of individuals, the internal IV becomes valid. More precise condi-

tions are given in Assumption 4. In a simple case where there is only 1 instrument

and f�ig is a sequence of scalars, the essential condition for the validity of the internal

instrument is

1

N

NX
i=1

yi1zi = f
2
1

1

N

NX
i=1

��i�i + op(1) 6= 0 almost surely, (9)

where fz1; :::; zNg and f��1; :::; ��Ng are reshu es of fy11; :::; yN1g and f�1; :::; �Ng;

respectively. Using the example in Section 2, condition (9) is tantamount to requiring

that individual reactions to the economy-wide variables are somehow related, which

seems reasonable.

The internal IV is de�ned formally as follows:

De�nition 1 Let fzk1; :::; zkNg be the k-th reshu e (or permutation ) of the initial

observations fy11; :::; yN1g (k = 1; :::;K) that is not equal to fy11; :::; yN1g: Assume
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that the reshu es are all distinct. The internal IV for yi1 is zi := [z1i; :::; zKi]0:

This de�nition means that there are K internal instruments. Each instrument

is di¤erent from the regressor, and each value of the regressor is used only once to

construct an instrument. The latter is not strictly required, but it is assumed for

analytical simplicity. In addition, instruments are all di¤erent. Under De�nition 1,

there are N !�1 instrument variables. In practice, a set of instruments that minimizes

the standard error of the IV estimator of �1 can be used. This will require a massive

amount of calculation when N is large.

The IV estimators of the coe¢ cients �� and �1 are de�ned as0@ �̂�

�̂1

1A = (Y 01PZY1)
�1Y 01PZyT ;

where PZ := Z(Z 0Z)�1Z 0; Z :=

26664
1 z01
...

...

1 z0N

37775 and Y1 :=
26664
1 y11
...

...

1 y11

37775 : The heteroskedasticity-
robust t-ratio for the null hypothesis (3) is de�ned as

t�̂1
=

�̂1 � 1q
(y�01 PZ�y

�
1)
�2y�01 Z

�(Z�0Z�)�1
�
Z�0diag(v̂21T ; :::; v̂

2
NT )Z

�
�
(Z�0Z�)�1Z�0y�1

;

where y�1 := [y11��y1; :::; yN1��y1]0; Z� is similarly de�ned, fv̂iT g denotes the regression

residuals using the IV estimators �̂� and �̂1; and diag(v̂
2
1T ; :::; v̂

2
NT ) is a diagonal

matrix having v̂21T ; :::; v̂
2
NT as its diagonal elements.

Theorem 2 reports limiting properties of �̂1 and t�̂1 under both the null and

alternative hypotheses (3) and (4).

Theorem 2 Assume that Assumptions 1�5 hold.

(i) Under the null hypothesis (3),

(a) �̂� = Op
�

1p
N

�
and �̂1 = 1 +Op

�
1p
N

�
;

(b) t�̂1
d�! N(0; 1).

(ii) Under the alternative hypothesis (4),
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(a) �̂� = �
�
1� �T�1

�
+Op

�
1p
N

�
and �̂1 = �

T�1 +Op
�

1p
N

�
;

(b) t�̂1
p�! �1 if j�j < 1 and t�̂1

p�!1 if � > 1.

Part (i) of Theorem 2 shows that the internal IV estimators are
p
N -consistent

under the null hypothesis and that the t-ratio has a standard normal distribution

in the limit. The latter result does not require using the functional central limit

theorem unlike extant panel unit root tests like Levin, Lin and Chu (2002), Im,

Pesaran and Shin (2003), and Choi (2001). This is because only the cross-sectional

variations of the data at periods 1 and T are used for the IV estimators. Part (ii) of

Theorem 2 shows that the IV estimators �̂� and �̂1 are
p
N -consistent for �(1��T�1)

and �T�1, respectively, and that the t-ratio diverges to �1 or 1 in probability

under the alternative, making our unit root test consistent. The former result is of

independent interest, since it shows that the common asymptotic value of the AR(1)

coe¢ cients f�ig can be estimated using the internal IV estimator even in the presence

of individual e¤ects and cross-sectional dependency. Con�dence intervals of � can

also be formulated regardless of its value. In the univariate case, constructions of the

con�dence intervals are not straightforward and various methods have been proposed

(see Choi, 2015).

Now, we extend the discussions so far to Model (2). The model is rewritten as

yit = �i + �it+ �
t�1
i xi1 + wit; (i = 1; : : : ; N ; t = 2; : : : ; T ); (10)

which gives the null representation of fyiT g as

yiT = �i + �iT + xi1 + siT (11)

= �i(T � 1) + yi1 + siT ;

since yi1 = �i+�i+xi1. If the observations fyitg are logarithmic, the parameter �i is

the average growth rate of yit over the T�1 periods since E ((yiT � yi1)=(T � 1)) = �i.

The initial variable, yi1, and the shocks, fuitgt=2;:::;T , have permanent e¤ects on yiT as

for the data-generating process (6). Cross-sectional covariances of fyiT g also behave

in the same manner as for the data-generating process (6). The variance of yiT grows

with T since Var(yiT ) = �2m + T
2�2b + �

0
i�f�i + (T � 1)�2ui .
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Under the alternative hypothesis (4) under j�j < 1, relation (10) gives

yiT = �i + �iT + �
T�1
i xi1 + wiT

= �i

�
1� �T�1i

�
+ �i

�
T � �T�1i

�
+ �T�1i yi1 + wiT : (12)

As for the data-generating process (7), the initial variable, yi1, and the shocks,

fuitgt=2;:::;T , have weakening e¤ects on yiT as T grows, while cross-sectional covari-

ances of fyiT g diminish for large N as T grows. The variance of yiT is �2m + T
2�2b +

�
2(T�1)
i �0i�f�i+

PT�2
j=0 �

2j
i �

2
uj . This is smaller than the variance of yiT under the null

hypothesis for large N .

In light of the data-generating processes (11) and (12), we are allowed to use

Model (8) for hypothesis testing even in the presence of the trend variable t because

it does not introduce any additional regressor. This is in contrast to the usual time

series and panel unit root tests where the linear time trend introduces an additional

regressor that results in lower power for the tests.

However, the OLS estimator of � is inconsistent under the null and alternative

hypotheses. In fact, we have under Assumptions 1, 2 and 3

�̂1
p�!
�
�2m + �

2
b +M� � f 01q�q0�f1

��1
(�2m + T�

2
b + �

T�1 �M� � f 01q�q0�f1
�
);

which implies that �̂1 converges in probability to a random variable greater than 1

almost surely even when � = 1 as long as �2b > 0: The OLS-based t-ratio should not

be used for unit root testing for this reason.

By contrast, �̂1 and t�̂1 have sound limiting properties as reported below.

Theorem 3 Assume that Assumptions 1�5 hold.

(i) Under the null hypothesis (3),

(a) �̂� = �(T � 1) +Op
�

1p
N

�
and �̂1 = 1 +Op

�
1p
N

�
;

(b) t�̂1
d�! N(0; 1).

(ii) Under the alternative hypothesis (4),

(a) �̂� = �
�
1� �T�1

�
+�

�
T � �T�1

�
+Op

�
1p
N

�
and �̂1 = �

T�1+Op
�

1p
N

�
;
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(b) t�̂1
p�! �1 if j�j < 1 and t�̂1

p�!1 if � > 1.

Part (i) of Theorem 3 implies that �̂� and �̂1 are
p
N -consistent for �(T � 1) and

1, respectively, and that the test statistic, t�̂1 , has a standard normal distribution

in the limit. Part (ii) of Theorem 3 shows that the IV estimators �̂� and �̂1 are
p
N -consistent for �(1� �T�1) + �(T � �T�1) and �T�1, respectively, and that the

t-ratio diverges to �1 or 1 in probability under the alternative hypothesis. Thus,

the unit root test continues to be consistent for Model (2).

What e¤ects would T have on the size and power of our unit root tests? As T

becomes larger, so does the di¤erence in the values of �1 under the null and alternative

hypotheses, which will induce higher power of our unit root test. This will be studied

more closely in the next section via simulation.

4 Simulation

This section reports simulation results for the test statistics of this paper. Such well-

known tests as Im, Pesaran and Shin�s (2003), and Levin, Lin and Chu�s (2002),

Maddala and Wu�s (2001), and Choi�s (2001) are not appropriate for the sample sizes

considered in this paper and are not simulated here. Simulation results for Harris

and Tzavalis� (1999) test are also reported in this section. Harris and Tzavalis�

test, essentially the Dickey-Fuller coe¢ cient test with bias corrections and variance

adjustments, is designed for short T and independent panels.

Data for our simulation were generated by Models (1) and (2). We set �i �

i: i:d: N(0; 1), �i � i: i:d: N(0; 1) and uit � i: i:d: N(0; �2ui) with �
2
ui � U [0:5; 1:5].

The initial variables, fxi1g, are generated by xi1 = �if1 with f1 � i: i:d: N(0; 1), and

� := [�1; :::; �N ]
0 � N(0;
); 
 :=

26666664
10 � � � � �

� 10
...

...
. . . . . . �

� � � � � 10

37777775. Under this data-generating
scheme, any random permutation of fyi;1g can be used as an instrument. We use

� = 1; 3 in our simulation. Since f�2uig and f�ig are sequences of constants, they are
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generated once before iterations and kept to have the same values throughout the

iterations.3 Under the null hypothesis, �i = 1 for every i; and under the alternative

hypothesis, �i = � + �i
N0:8 for every i with � = 1; 1:01; 0:99; 0:98; 0:95 and �i �

i: i:d: U [�0:25; 0:25]: The numbers of time series observations considered are 2, 3 and

7. The numbers of cross-sectional observations are 50, 100, 200 and 400. The reported

results are based on 5,000 iterations, and the nominal size is set at 0.05. We report

both size-unadjusted and size-adjusted empirical power. The size-adjusted empirical

power means that of the test which uses an empirical critical value that always makes

the empirical size 0.05.

Table 1 reports simulation results using Model (1). The IV-based t-ratio employs

25 instruments4 that are selected by a random permutation of the regressor. Em-

pirical sizes of both left-sided and right-sided tests are reported. The sample size

T = 2 deserves an attention because only this paper�s test can be used at this sample

size. All extant panel unit root tests require at least 3 time series observations, 1

reserved for the initial variable and the remaining 2 used for the parameter estima-

tion. The OLS-based t-ratio, t�̂1 ; keeps the nominal size well at all cross-sectional

and time series sample sizes and its power quickly converges to 1 as N increases.

The IV-based t-ratio, t�̂1 ; also keeps the nominal size well under the null hypothesis

and has lower empirical power than t�̂1 at all T and N: As N increases, its power

increases as N does, con�rming consistency of the test. In addition, as well expected,

the empirical powers of our test statistics improve as � takes smaller values and T

becomes larger. The value of � does not in�uence empirical sizes and powers much

in our data-generating scheme.

Table 2 reports simulation results using Model (2) and t�̂1 using 25 instruments.

The OLS-based t-ratio is not experimented with, because it is not consistent. The

sample sizes T = 2; 3 are worthy of our attention, because all panel unit root tests

3 If f�ig is treated as a random sequence, much more computation time is needed while the results

are not qualitatively di¤erent.
4Using more than 25 instruments did not bring any notable changes in empirical sizes of the test.

See the next section for discussions on the choice of instruments.
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other than ours require at least 4 time series observations, 1 for the initial variable

and 3 for the coe¢ cient estimation. According to Table 3, t�̂1 tends to be well sized.

The behavior of the empirical power in Table 2 is similar to that in Table 1: It

increases with N and T and decreases with the value of �. Compared to Table 1,

empirical power decreases in Table 2. This can be explained by the lower e¢ ciency

of �̂1 for Model (2) than for Model (1).

Table 3 reports simulation results for Harris and Tzavalis�(1999) test using Model

(1) at T = 3. Dependent panels were generated as for Table 1 with � = 1: Independent

panels were generated by setting �i = 0 for all i: Harris and Tzavalis�test keeps the

nominal size reasonably well. But it shows quite low power for dependent panels.

In many cases, its empirical power is zero. For independent panels, the test behaves

reasonably: Its power increases asN does and as the alternative points become farther

away from the null point. Results of Table 3 con�rm that Harris and Tzavalis�test

is suitable only for independent panels as it is designed to be.

5 An empirical example

This section applies our panel unit root test to the monthly real wages of new college

graduates in South Korea. The data have been collected regularly by the Korea

Employment Information Service since 2006. We will use the panel data collected in

2006 and 2008 regarding 15,226 two-year and four-year college graduates, all of whom

were employed in 2006 for the �rst time and remained to be hired in 2008.5 With

small T and large N , our panel unit root test is suitable for this data. Moreover, since

the individuals have the same tenure in the job market, there will be less heterogeneity

in individual pro�les than for other samples.

There has been much research about modelling individual earnings dynamics in

labor economics. Some studies report empirical evidence that the shocks to earnings

(i.e., xit in Models (1) and (2), if yit denotes the log earnings) seem stationary (see

Lillard and Weiss, 1979; Baker, 1997; Haider, 2001; Guvenen, 2009; Okubo, 2015).

5Some data points obviously subject to measurement errors are excluded.
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Others assume the presence of a unit root in individual earnings (see, for example,

MaCurdy, 1982; Abowd and Card, 1989; Topel and Ward, 1992; Dickens, 2000;

Mo¢ tt and Gottschalk, 2002; Ramos, 2003) and study individual earnings dynamics,

reporting mainly that the autocorrelations of the log di¤erence of income are small

and negative. This practice was motivated by MaCurdy(1982) who reports empirical

evidence favoring the presence of a unit root.6 If there is a unit root in the shocks to

earnings, a large proportion of the individual variability of earnings can be explained

by the shocks and the variability increases as individuals accumulate job-market

experience. If not, the individual variability of earnings can better be explained by the

heterogeneous job-market pro�les of the individuals and there is no guarantee that the

variability increases as time goes by. Beyond this, the nature of idiosyncratic shocks

crucially a¤ects individuals� consumption�savings decisions, which are related to a

host of economic issues. See Guvenen (2009) for further discussion. Notwithstanding

the perceived importance of a unit root for earnings data, panel unit root tests have

not been used much for earnings data. The only result from using panel data is

Ng (2008) who reports that one-�fth to as many as one third of earnings of male

household heads in the US (N = 104 and T = 25) have a unit root. The lack of

interest in using panel unit root tests for earnings data is indeed surprising given

their widespread use in other research areas.

Table 4 reports estimation and test results using the monthly real wages of new

college graduates in South Korea. We report the results both from the full sample and

from the restricted sample of four-year college graduates. The IV regressions were run

using 100, 150,..., 2950, 3000 instruments. At each number of instruments, 11 sets of

instruments were randomly chosen7 and the results corresponding to the median of

the AR(1) coe¢ cient estimates were recorded. Then, letting the AR(1) coe¢ cient us-

ing k instruments be �̂1(k); the sample variances of f�̂1(l)gl=k�100; k�50; k; k+50; k+100
were calculated. Table 4 reports results corresponding to the number of instruments

6Topel and Ward (1992) also report similar results.
7Using more sets of instruments does not bring qualitatively di¤erent results. But we �nd that it

is computationally very costly. So we used only 11 sets of instruments.
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showing the minimum sample variance.

Part (i) of Table 4 show that the null hypothesis of a unit root is rejected at

the 1% signi�cance level for both samples when the OLS-based t-ratio is used. The

AR(1) coe¢ cient estimates are 0.6961 and 0.6567 for the full and restricted samples,

respectively. Part (ii) of Table 4 reports results of IV-based estimation and test. For

both samples, the null hypothesis of a unit root is rejected at the 1% level. The

AR(1) coe¢ cient estimates are 0.6994 and 0.6603 for the full and restricted samples,

respectively, which are similar to the corresponding results using OLS. We report here

only the results chosen by the criterion of minimum variance of the AR(1) coe¢ cient

estimates, but all the values of the IV-based t-ratio using 100, 150,..., 2950, 3000

instruments reject the null hypothesis of a unit root at the 1% level.

The test results of Table 4 strongly indicate that the individual earnings follow

a stationary autoregressive process rather than a unit root process. This provides

support to the similar evidence obtained by Guvenen (2009) and Okubo (2015) using

US and Japanese data, respectively.

One of the important issues in IV estimation is selection of the number of in-

struments. Andrews (1999) and Donald and Newey (2001) are representative works

studying this issue. However, the number of available instruments in this paper is

much larger than the sample size, making existing methods inapplicable. In this

section, we used the minimum variance criterion, but other methods can also be

considered.

6 Summary and further remark

We have proposed a panel unit root test suitable for micropanels with short time

dimensions and large cross sections. This test is based on a heterogeneous panel

AR(1) model that allows for cross-sectional dependency introduced by the initial

condition, which assumes a factor structure. Most importantly, the test does not use

the AR(1) coe¢ cient estimator. Instead, it rests on the fact that the initial condition

has permanent e¤ects on the trajectory of a time series in the presence of a unit root.
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We measure the e¤ects of the initial condition by cross-sectional regressions using the

�rst time series observations as a regressor and the last as the dependent variable.

Our test statistic is the t-ratio for the coe¢ cient of the regressor, and it has a standard

normal distribution in the limit. The t-ratio is based on the OLS and IV estimators.

The IV estimator uses reshu ed regressors as instruments. The test can be used for

very small T including T = 2 as long as N is large. Simulation results show that

this paper�s test has reasonable empirical size and power. As an example, we apply

the test to the monthly real wage of new college graduates in South Korea who were

hired in the same year for the �rst time. Even with just 2 time-series observations,

the test rejects the null hypothesis of a unit root at conventional signi�cance levels.

Our panel AR(1) model is new in the literature and should be useful for some

applications. The IV estimator consistently estimates the model�s AR(1) coe¢ cients

regardless of their locations. Choosing the number of instruments is an important

problem for the internal IV regression. This paper does not deal with this problem,

because it is beyond the scope of this paper. More work for the problem is needed to

make the internal IV regression more useful.
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Appendix I Technical assumptions

This section presents some assumptions of purely technical nature that are required

to prove the main results of the paper. Assumption 3 involves the factor loadings.

Assumption 3 (i) 1
N

PN
i=1 �i ! q�;

(ii) 1
N

PN
i=1 �i�

0
i !M� (> 0).

Assumption 4 is required for proper limiting distributions of the OLS and internal

IV estimators of Section 3.

Assumption 4 (i) plim 1
N

24 1
PN
i=1 yi1PN

i=1 yi1
PN
i=1 y

2
i1

35 := A is invertible almost surely.
(ii) plim 1

N

PN
i=1 �

2
ui

24 1 y1i

y1i y21i

35 := B is positive de�nite almost surely.

(iii) plim 1
NZ

0Z :=MZZ is invertible almost surely.

(iv) plim 1
N Y

0
1Z :=MY1Z exists.

(v) plim 1
N Y

0
1PZY1 := C is invertible almost surely.

(vi) plim 1
N

PN
i=1 �

2
ui

24 1 z0i

zi ziz
0
i

35 := D is positive de�nite almost surely.

(vii) plim 1
N

PN
i=1

��PT�2
j=0 �

2j
�
�2ui +

�
1� �T�1

�2
�2m

�24 1 z0i

zi ziz
0
i

35 := E is positive

de�nite almost surely.

(viii) plim 1
N

PN
i=1

�
�2ui + (T � 1)�

2
b

�24 1 z0i

zi ziz
0
i

35 := Gis positive de�nite almost surely.
(ix) plim 1

N

PN
i=1

��PT�2
j=0 �

2j
�
�2ui +

�
1� �T�1

�2
�2m +

�
T � �T�1

�2
�2b

�24 1 z0i

zi ziz
0
i

35 :=
K is positive de�nite almost surely.

Assumption 5 is required to apply the central limit theorem for independent and

heterogeneous sequences (Davidson, 1994, chapter 23).
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Assumption 5 (i) 1
N

PN
i=1 �

2
ui > 0 uniformly in N ;

(ii) For � > 0, E juiT j2+� <1 uniformly in i.

(iii) For � > 0, E jmij2+� <1 uniformly in i.

(iv) For � > 0, E jbij2+� <1 uniformly in i.

Appendix II Proofs

Proof of Theorem 1:

(i) (a) Under the null hypothesis, �� = 0 and �1 = 1. Thus, we have

p
N

0@ ~��

~�1 � 1

1A=
24 1

PN
i=1 yi1=NPN

i=1 yi1=N
PN
i=1 y

2
i1=N

35�1 24 PN
i=1 siT =

p
NPN

i=1 yi1siT =
p
N

35
:= A�1N BN .

Under Assumption 4, we have

AN
p�! A: (A.II.1)

The sequence fsiT g is independent with E(siT ) = 0 and Var(siT ) = (T � 1)�2ui for

every i. Moreover, E jsiT j2+� < 1 and E jmisiT j2+� < 1 uniformly in i for � > 0

due to Assumption 5 and the Minkowski inequality. Thus, for given f1, the central

limit theorem for independent and heterogeneous sequences gives

BN
d�! N

0@0; (T � 1) plim 1

N

NX
i=1

�2ui

24 1 yi1

yi1 y2i1

351A= N(0; (T � 1)B). (A.II.2)

Asymptotic results (A.II.1) and (A.II.2) under Assumption 4 indicate that the lim-

iting distribution of the OLS estimator is well de�ned and that it is mixture normal.

The consistency rates of the OLS estimators ~�� and ~�1 stated in part (i) follow from

this.

(b) Because ~�1 � 1 =
PN
i=1 (yi1 � �y1) viT =

PN
i=1 (yi1 � �y1)

2 and, because ~v2iT =

v2iT + Op

�
1p
N

�
,
p
N times the denominator of t~�1 converges in probability to the
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square root of the asymptotic variance of ~�1�1. This is represented by the southeast

element of (T � 1)A�1BA�10. The stated result follows from this.

(ii) (a) The binomial expansion of �T�1i gives

�T�1i =
�
�+ �i=N

1=2+"
�T�1

= �T�1 +
T�1X
j=1

cj

�
�i=N

1=2+"
�j
; (A.II.3)

where fcjg is a sequence of �nite constants. Using this representation, write the

data-generating process (7) as

yiT = �+mi + �
T�1xi1 + wiT + �iNxi1;

where �iN :=
PT�1
j=1 cj

�
�i=N

1=2+"
�j
. Because

wiT =

T�2X
j=0

�jiui;T�j

= ui;T +

T�2X
j=1

�
�+ �i=N

1=2+"
�j
ui;T�j

= ui;T +
T�2X
j=1

 
�j +

jX
k=1

dk

�
�i=N

1=2+"
�k!

ui;T�j

=
T�2X
j=0

�jui;T�j +
T�2X
j=1

 
jX
k=1

dk

�
�i=N

1=2+"
�k!

ui;T�j

=

T�2X
j=0

�jui;T�j +Op

�
1

N1=2+"

�
; (A.II.4)

where fdkg is a sequence of �nite constants, fwiT g behaves as if it were
nPT�2

j=0 �
jui;T�j

o
in the limit. Thus, we obtain

~�1 =

PN
i=1(yi1 � �y1)(yiT � �yT )PN

i=1(yi1 � �y1)2

=

 
NX
i=1

(mi � �m+ xi1 � �x1)2=N
!�1

�
 

NX
i=1

(mi � �m+ xi1 � �x1)(mi � �m+ �T�1 (xi1 � �x1) + wiT � �wT )=N + op(1)

!
p�! �2m + �

T�1 (f 01M�f1 � f 01q�q0�f1)
�2m + f

0
1M�f1 � f 01q�q0�f1

;
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as desired.

(b) Because the denominator of the t-ratio is Op(1); the stated result follows from

part (a).

Proof of Theorem 2:

(i) (a) Under the null hypothesis, we may write

p
N

0@ �̂�

�̂1 � 1

1A= (Y 01PZY1)�1Y 01Z(Z 0Z)�1
24 PN

i=1 siT =
p
NPN

i=1 zisiT =
p
N

35
:= C�1N Y 01Z(Z

0Z)�1DN .

Under Assumption 4, we have

1

N
CN

p�! C;
1

N
Y 01Z

p�!MY1Z ;
1

N
Z 0Z

p�!MZZ (A.II.5)

and, for given f1, the central limit theorem for independent and heterogeneous se-

quences gives as for part (a) of Theorem 1

DN
d�! N (0; (T � 1)D) . (A.II.6)

The consistency rates of the IV estimators �̂� and �̂1 stated in part (i) follow from

relations (A.II.5) and (A.II.6).

(b) This is obtained as for part (i) (b) of Theorem 1.

(ii) (a) Using the expansion (A.II.3), write the data-generating process (7) as

yiT = �
�
1� �T�1

�
+ �T�1yi1 + wiT +mi

�
1� �T�1

�
+ �iN (yi1 � ��mi):

Using this, we have

p
N

0@�̂� � �(1� �T�1)
�̂1 � �T�1

1A = (
1

N
Y 01PZY1)

�1Y 01Z(Z
0Z)�1

2664
NP
i=1
� iNT =

p
N

NP
i=1
zi� iNT =

p
N

3775
:= C�1N Y 01Z(Z

0Z)�1EN ,

where � iNT := wiT +mi

�
1� �T�1

�
+ �iN (yi1���mi). Since �iN = O

�
1

N1=2+"

�
for

every i; 1p
N

NP
i=1
�iN (yi1 � ��mi) = op(1) and 1p

N

PN
i=1 zi�iN (yi1 � ��mi) = op(1).
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Therefore, we have

EN =

24 PN
i=1

�
wiT +mi(1� �T�1)

�
=
p
NPN

i=1 zi
�
wiT +mi(1� �T�1)

�
=
p
N

35+ op(1):
Moreover, fwiT g behaves as if it were

nPT�2
j=0 �

jui;T�j
o
in the limit as shown in

(A.II.4). Thus, the standard theory of linear regression yields, for given f1,

p
N

0@ �̂� � �(1� �T�1)

�̂1 � �T�1

1A d�! N(0; C�1MY1ZMZZEMZZM
0
Y1ZC

�1);

where E is de�ned in Assumption 4.

(b) Let the usual heteroskedasticity-robust t-ratio for the null hypothesis H0 :

�1 = �T�1 be denoted as ��1 . Then we have t�̂1 = ��1 +
p
N(�T�1 � 1)=(

p
NF ),

where F is the denominator of t�̂1 . Since ��1 has a standard normal distribution and

F = Op

�
1=
p
N
�
, the stated result follows.

Proof of Theorem 3:

(i) (a) Write yiT = �(T � 1) + yi1 + siT + bi(T � 1). Then, as in the proof of

Theorem 2 (i) (a), for given f1,

p
N

0@ �̂� � �(T � 1)

�̂1 � 1

1A = (
1

N
Y 01PZY1)

�1Y 01Z(Z
0Z)�1

26664
NP
i=1
(siT+bi(T�1))

p
N

NP
i=1

zi(siT+bi(T�1))
p
N

37775
d�! N(0; (T � 1)C�1MY1ZMZZGMZZM

0
Y1ZC

�1);

where G is de�ned in Assumption 4. The stated results follow from this.

(b) Use the same arguments as for Theorem 2 (i) (b).

(ii) (a) Using (A.II.3), the data-generating process (12) can be written as

yiT = �i

�
1� �T�1i

�
+ �i(T � �T�1i ) + �T�1i yi1 + wiT

= �
�
1� �T�1

�
+ �

�
T � �T�1

�
+ �T�1yi1 + wiT

+mi

�
1� �T�1

�
+ bi

�
T � �T�1

�
+ �iN (yi1 � �� � �mi � bi):
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Now, 1p
N

NP
i=1
�iN (yi1 � � � � �mi � bi) and 1p

N

NP
i=1
zi�iN (yi1 � � � � �mi � bi) are

Op(1) under the assumptions, implying that the terms involving �iN do not a¤ect the

limiting distribution of the IV estimator. Thus, according to the standard theory of

linear regression, we have, for given f1;

p
N

0@�̂� � �(1� �T�1)� �(T � �T�1)
�̂1 � �T�1

1A d�! N(0; (T�1)C�1MY1ZMZZKMZZM
0
Y1ZC

�1);

where K is as de�ned in Assumption 4. Thus, the stated results are obtained.

(b) This follows as in the proof of part (ii) (b) of Theorem 2.
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Table 1: Empirical Size and Power of t~�1 and t�̂1 for the Case of an Intercept

Note: 1. The number of iterations is 5,000.
2. NSA: not size-adjusted; SA: size-adjusted.
3. Two �gures for each N at � = 1 are empirical sizes of left-sided and right-sided tests,

respectively. The nominal size is kept at 0.05.

(i) T = 2

� = 1 � = 3
� N OLS IV OLS IV

NSA SA NSA SA NSA SA NSA SA
1.00 50 (L) 0.072 - 0.058 - 0.067 - 0.060 -

50 (R) 0.063 - 0.059 - 0.063 - 0.055 -
100 (L) 0.059 - 0.048 - 0.056 - 0.051 -
100 (R) 0.061 - 0.048 - 0.062 - 0.051 -
200 (L) 0.055 - 0.041 - 0.057 - 0.042 -
200 (R) 0.045 - 0.045 - 0.045 - 0.046 -
400 (L) 0.049 - 0.043 - 0.051 - 0.043 -
400 (R) 0.050 - 0.046 - 0.049 - 0.046 -

1.01 50 0.451 0.410 0.308 0.282 0.432 0.373 0.289 0.274
100 0.871 0.848 0.418 0.429 0.842 0.821 0.401 0.401
200 1.000 1.000 0.703 0.715 1.000 1.000 0.675 0.686
400 1.000 1.000 0.882 0.890 1.000 1.000 0.857 0.865

0.99 50 0.510 0.437 0.342 0.320 0.506 0.440 0.335 0.318
100 0.881 0.866 0.454 0.463 0.859 0.841 0.439 0.436
200 1.000 1.000 0.654 0.686 1.000 0.999 0.645 0.661
400 1.000 1.000 0.868 0.878 1.000 1.000 0.848 0.858

0.98 50 0.907 0.871 0.713 0.694 0.887 0.853 0.692 0.673
100 1.000 1.000 0.868 0.870 0.999 0.999 0.842 0.841
200 1.000 1.000 0.981 0.983 1.000 1.000 0.970 0.973
400 1.000 1.000 0.999 0.999 1.000 1.000 0.998 0.998

0.95 50 1.000 1.000 0.995 0.995 1.000 1.000 0.994 0.993
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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(ii) T = 3

� = 1 � = 3
� N OLS IV OLS IV

NSA SA NSA SA NSA SA NSA SA
1.00 50 (L) 0.063 - 0.051 - 0.064 - 0.058 -

50 (R) 0.067 - 0.062 - 0.065 - 0.059 -
100 (L) 0.056 - 0.046 - 0.055 - 0.049 -
100 (R) 0.052 - 0.054 - 0.051 - 0.054 -
200 (L) 0.055 - 0.044 - 0.056 - 0.041 -
200 (R) 0.056 - 0.047 - 0.052 - 0.046 -
400 (L) 0.051 - 0.039 - 0.050 - 0.039 -
400 (R) 0.053 - 0.046 - 0.052 - 0.047 -

1.01 50 0.641 0.594 0.453 0.415 0.612 0.560 0.428 0.392
100 0.982 0.982 0.643 0.633 0.971 0.970 0.614 0.603
200 1.000 1.000 0.900 0.902 1.000 1.000 0.880 0.888
400 1.000 1.000 0.980 0.981 1.000 1.000 0.970 0.972

0.99 50 0.715 0.664 0.500 0.494 0.699 0.655 0.487 0.455
100 0.986 0.985 0.643 0.651 0.975 0.972 0.621 0.624
200 1.000 1.000 0.874 0.885 1.000 1.000 0.856 0.869
400 1.000 1.000 0.976 0.980 1.000 1.000 0.969 0.973

0.98 50 0.987 0.981 0.899 0.898 0.978 0.974 0.877 0.860
100 1.000 1.000 0.970 0.972 1.000 1.000 0.958 0.959
200 1.000 1.000 0.999 0.999 1.000 1.000 0.997 0.997
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 50 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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(iii) T = 7

� = 1 � = 3
� N OLS IV OLS IV

NSA SA NSA SA NSA SA NSA SA
1.00 50 (L) 0.070 - 0.054 - 0.066 - 0.057 -

50 (R) 0.059 - 0.059 - 0.062 - 0.058 -
100 (L) 0.054 - 0.050 - 0.054 - 0.051 -
100 (R) 0.054 - 0.051 - 0.057 - 0.051 -
200 (L) 0.053 - 0.039 - 0.053 - 0.043 -
200 (R) 0.055 - 0.045 - 0.054 - 0.039 -
400 (L) 0.050 - 0.036 - 0.050 - 0.041 -
400 (R) 0.055 - 0.041 - 0.052 - 0.041 -

1.01 50 0.923 0.910 0.758 0.737 0.898 0.881 0.724 0.702
100 1.000 1.000 0.923 0.922 1.000 1.000 0.903 0.902
200 1.000 1.000 0.995 0.996 1.000 1.000 0.991 0.993
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.99 50 0.953 0.935 0.803 0.793 0.940 0.925 0.783 0.770
100 1.000 1.000 0.932 0.932 1.000 1.000 0.916 0.914
200 1.000 1.000 0.995 0.996 1.000 1.000 0.992 0.994
400 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000

0.98 50 1.000 1.000 0.994 0.994 1.000 0.999 0.991 0.990
100 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2: Empirical Size and Power of t�̂1 for the Case of an Intercept and a Linear
Time Trend

Note: 1. The number of iterations is 5,000.
2. NSA: not size-adjusted; SA: size-adjusted.
3. Two �gures for each N at � = 1 are empirical sizes of left-sided and right-sided tests,

respectively. The nominal size is kept at 0.05.

(i) T = 2

� N � = 1 � = 3
NSA SA NSA SA

1.00 50 (L) 0.041 - 0.039 -
50 (R) 0.087 - 0.086 -
100 (L) 0.044 - 0.042 -
100 (R) 0.064 - 0.068 -
200 (L) 0.031 - 0.032 -
200 (R) 0.057 - 0.055 -
400 (L) 0.033 - 0.036 -
400 (R) 0.051 - 0.047 -

1.01 50 0.265 0.188 0.255 0.173
100 0.326 0.285 0.317 0.271
200 0.526 0.499 0.516 0.500
400 0.703 0.699 0.685 0.690

0.99 50 0.179 0.200 0.176 0.200
100 0.265 0.281 0.257 0.280
200 0.404 0.477 0.396 0.469
400 0.653 0.700 0.637 0.682

0.98 50 0.430 0.461 0.413 0.447
100 0.642 0.659 0.614 0.636
200 0.870 0.898 0.836 0.876
400 0.978 0.985 0.968 0.974

0.95 50 0.948 0.957 0.931 0.940
100 0.992 0.992 0.988 0.989
200 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000
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(ii) T = 3

� N � = 1 � = 3
NSA SA NSA SA

1.00 50 (L) 0.039 - 0.040 -
50 (R) 0.081 - 0.083 -
100 (L) 0.038 - 0.038 -
100 (R) 0.068 - 0.071 -
200 (L) 0.036 - 0.037 -
200 (R) 0.054 - 0.050 -
400 (L) 0.037 - 0.038 -
400 (R) 0.055 - 0.052 -

1.01 50 0.309 0.225 0.299 0.215
100 0.403 0.351 0.388 0.331
200 0.611 0.599 0.589 0.589
400 0.805 0.799 0.781 0.777

0.99 50 0.206 0.240 0.205 0.237
100 0.304 0.351 0.296 0.342
200 0.511 0.556 0.496 0.542
400 0.749 0.780 0.729 0.759

0.98 50 0.513 0.554 0.488 0.528
100 0.729 0.776 0.704 0.745
200 0.932 0.946 0.909 0.926
400 0.992 0.994 0.986 0.991

0.95 50 0.972 0.979 0.958 0.967
100 0.998 0.998 0.997 0.997
200 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000
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(iii) T = 7

� N � = 1 � = 3
NSA SA NSA SA

1.00 50 (L) 0.041 - 0.041 -
50 (R) 0.091 - 0.089 -
100 (L) 0.040 - 0.039 -
100 (R) 0.072 - 0.072 -
200 (L) 0.040 - 0.039 -
200 (R) 0.055 - 0.053 -
400 (L) 0.035 - 0.032 -
400 (R) 0.046 - 0.046 -

1.01 50 0.365 0.252 0.353 0.254
100 0.495 0.426 0.474 0.412
200 0.704 0.689 0.686 0.671
400 0.888 0.895 0.864 0.871

0.99 50 0.227 0.256 0.223 0.247
100 0.360 0.405 0.349 0.386
200 0.587 0.622 0.564 0.603
400 0.820 0.857 0.793 0.839

0.98 50 0.560 0.594 0.526 0.556
100 0.802 0.832 0.767 0.792
200 0.959 0.965 0.938 0.948
400 0.997 0.998 0.994 0.996

0.95 50 0.977 0.981 0.964 0.968
100 0.998 0.998 0.996 0.997
200 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000
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Table 3: Empirical Size and Power of Harris and Tzavalis�(1999) Test at T = 3
for the Case of an Intercept

Note: 1. The number of iterations is 5,000.
3. NSA: not size-adjusted; SA: size-adjusted.
4. Two �gures for each N at � = 1 are empirical sizes of left-sided and right-sided tests,

respectively. The nominal size is kept at 0.05.

� N Dependent panels Independent panels
NSA SA NSA SA

1.00 50 (L) 0.071 - 0.072 -
50 (R) 0.078 - 0.076 -
100 (L) 0.065 - 0.068 -
100 (R) 0.065 - 0.074 -
200 (L) 0.072 - 0.084 -
200 (R) 0.072 - 0.075 -
400 (L) 0.071 - 0.067 -
400 (R) 0.068 - 0.078 -

1.01 50 0.177 0.119 0.086 0.059
100 0.300 0.252 0.086 0.059
200 0.813 0.758 0.090 0.068
400 1.000 1.000 0.106 0.075

0.99 50 0.033 0.022 0.081 0.058
100 0.011 0.007 0.082 0.061
200 0.000 0.000 0.105 0.063
400 0.000 0.000 0.095 0.070

0.98 50 0.007 0.004 0.091 0.065
100 0.000 0.000 0.098 0.072
200 0.000 0.000 0.127 0.081
400 0.000 0.000 0.127 0.100

0.95 50 0.000 0.000 0.120 0.091
100 0.000 0.000 0.153 0.121
200 0.000 0.000 0.217 0.152
400 0.000 0.000 0.273 0.225

36



Table 4: Results of Estimation and Panel Unit Root Test

Note: 1. For the full-sample, (T;N) =(2, 15226); and for the sample from four-year
college graudates, (T;N) =(2, 9568):

2. (��): signi�cant at the 1% level; SE.: standard error

(i) OLS-based inference

~�1 SE t~�1
Full-sample 0.6961 0.0071 -42.68��

Four-year college 0.6567 0.0099 -34.82��

(ii) IV-based inference

# of instruments �̂1 SE t�̂1
Full-sample 2,650 0.6994 0.0136 -22.18��

Four-year college 1,950 0.6603 0.0175 -19.39��
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